Alexander Woo
-
Permutations with Kazhdan-Lusztig polynomial $ P_id,w(q)=1+q^h$
dmtcs:2705 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2009,
DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
-
https://doi.org/10.46298/dmtcs.2705
Permutations with Kazhdan-Lusztig polynomial $ P_id,w(q)=1+q^h$Article
Authors: Alexander Woo 1
0000-0003-1985-341X
Alexander Woo
1 Department of Mathematics, St. Olaf College, Northfield
Using resolutions of singularities introduced by Cortez and a method for calculating Kazhdan-Lusztig polynomials due to Polo, we prove the conjecture of Billey and Braden characterizing permutations w with Kazhdan-Lusztig polynomial$ P_id,w(q)=1+q^h$ for some $h$.
Vertical Integration of Research and Education in the Mathematical Sciences - VIGRE: Research Focus Groups in Mathematics; Funder: National Science Foundation; Code: 0135345
Bibliographic References
2 Documents citing this article
Laura Escobar;Benjamin J. Wyser;Alexander Yong, 2022, K-orbit closures and Barbasch–Evens–Magyar varieties, arXiv (Cornell University), 320, 1, pp. 103-132, 10.2140/pjm.2022.320.103, http://arxiv.org/abs/1708.06663.
Dmitry Fuchs;Alexandre Kirillov;Sophie Morier-Genoud;Valentin Ovsienko, 2017, On Tangent Cones of Schubert Varieties, arXiv (Cornell University), 3, 4, pp. 451-482, 10.1007/s40598-017-0074-x, https://arxiv.org/abs/1606.07846.