Alexander Woo
-
Permutations with Kazhdan-Lusztig polynomial $ P_id,w(q)=1+q^h$
dmtcs:2705 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2009,
DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
-
https://doi.org/10.46298/dmtcs.2705Permutations with Kazhdan-Lusztig polynomial $ P_id,w(q)=1+q^h$Conference paperAuthors: Alexander Woo
1,2
0000-0003-1985-341X
Alexander Woo
- 1 Department of Mathematics, St. Olaf College, Northfield
- 2 Department of Mathematics [Northfield, St. Olaf College]
[en]
Using resolutions of singularities introduced by Cortez and a method for calculating Kazhdan-Lusztig polynomials due to Polo, we prove the conjecture of Billey and Braden characterizing permutations w with Kazhdan-Lusztig polynomial$ P_id,w(q)=1+q^h$ for some $h$.
[fr]
On démontre la conjecture de Billey et Braden sur les permutations w pour lesquelles le polynôme de Kazhdan-Lusztig $P_id,w(q)=1+q^h$ pour un entier $h$. On emploie une résolution des singularités présentées par Cortez et une méthode de Polo pour calculer ces polynômes.
Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Kazhdan-Lusztig polynomials, Schubert varieties
Funding:
Source : OpenAIRE Graph- Vertical Integration of Research and Education in the Mathematical Sciences - VIGRE: Research Focus Groups in Mathematics; Funder: National Science Foundation; Code: 0135345