Christopher Severs ; Jacob White - k-Parabolic Subspace Arrangements

dmtcs:2711 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2711
k-Parabolic Subspace ArrangementsConference paper

Authors: Christopher Severs 1; Jacob White 1

  • 1 School of Mathematical and Statistical Sciences (Arizona, Tempe)

[en]
In this paper, we study k-parabolic arrangements, a generalization of the k-equal arrangement for any finite real reflection group. When k=2, these arrangements correspond to the well-studied Coxeter arrangements. Brieskorn (1971) showed that the fundamental group of the complement of the type W Coxeter arrangement (over $\mathbb{C}$) is isomorphic to the pure Artin group of type W. Khovanov (1996) gave an algebraic description for the fundamental group of the complement of the 3-equal arrangement (over $\mathbb{R}$). We generalize Khovanov's result to obtain an algebraic description of the fundamental group of the complement of the 3-parabolic arrangement for arbitrary finite reflection group. Our description is a real analogue to Brieskorn's description.

[fr]
Nous généralisons les arrangements k-égaux à tous les groupes de réflexions finis réels. Les arrangements ainsi obtenus sont dits k-paraboliques. Dans le cas où k = 2 nous retrouvons les arrangements de Coxeter qui sont bien connus. En 1971, Brieskorn démontra que le groupe fondamental associé au complément (complexe) de l'arrangement de Coxeter de type W est en fait isomorphe au groupe pure d'Artin de type W . En 1996, Khovanov donne une description algébrique du groupe fondamental du complément (réel) de l'arrangement 3-égaux. Nous généralisons le résultat de Khovanov et obtenons une description algébrique du groupe fondamental de l'espace complément d'un arrangement k-parabolique pour tous les groupes de réflexions finis et réels. Il se trouve que notre description est l'analogue réel de la description de Brieskorn.


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Discrete Homotopy Theory, Coxeter Groups, Subspace Arrangements

Consultation statistics

This page has been seen 339 times.
This article's PDF has been downloaded 539 times.