P. Hersh ; J. Shareshian ; D. Stanton - The $q=-1$ phenomenon for bounded (plane) partitions via homology concentration

dmtcs:2716 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2716
The $q=-1$ phenomenon for bounded (plane) partitions via homology concentrationConference paper

Authors: P. Hersh 1,2; J. Shareshian 3; D. Stanton 4

[en]
Algebraic complexes whose "faces'' are indexed by partitions and plane partitions are introduced, and their homology is proven to be concentrated in even dimensions with homology basis indexed by fixed points of an involution, thereby explaining topologically two quite important instances of Stembridge's $q=-1$ phenomenon. A more general framework of invariant and coinvariant complexes with coefficients taken $\mod 2$ is developed, and as a part of this story an analogous topological result for necklaces is conjectured.

[fr]
Complexes algébriques dont les "faces'' sont indexées par des partitions et des partitions planes sont introduits. Il est démontré que leur homologie est concentrée en dimensions paires, avec base de homologie indexée par des points fixes d'une involution. Ce résultat explique d'une manière topologique deux instances du phénomène $q=-1$ dû a Stembridge. De plus, un cadre plus général des complexes invariants et coinvariants dont les coefficients sont pris modulo $2$ est développé. Comme part de cette histoire, nous conjecturons un résultat analogue pour des colliers.


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] plane partitions, discrete Morse theory, $q=-1$ phenomenon, homology basis, down operator
Funding:
    Source : OpenAIRE Graph
  • Algebraic and topological combinatorics; Funder: National Science Foundation; Code: 0757935
  • Enumerative, Algebraic and Topological Combinatorics; Funder: National Science Foundation; Code: 0604233
  • Algebraic and topological combinatorics of posets; Funder: National Science Foundation; Code: 0500638
  • Combinatorics of Special Functions; Funder: National Science Foundation; Code: 0503660

Consultation statistics

This page has been seen 355 times.
This article's PDF has been downloaded 504 times.