Aslak Bakke Buan ; Idun Reiten ; Hugh Thomas - $m$-noncrossing partitions and $m$-clusters

dmtcs:2719 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2719
$m$-noncrossing partitions and $m$-clustersConference paper

Authors: Aslak Bakke Buan 1; Idun Reiten 1; Hugh Thomas 2

  • 1 Institutt for matematiske fag
  • 2 Department of Mathematics and Statistics

[en]
Let $W$ be a finite crystallographic reflection group, with root system $\Phi$. Associated to $W$ there is a positive integer, the generalized Catalan number, which counts the clusters in the associated cluster algebra, the noncrossing partitions for $W$, and several other interesting sets. Bijections have been found between the clusters and the noncrossing partitions by Reading and Athanasiadis et al. There is a further generalization of the generalized Catalan number, sometimes called the Fuss-Catalan number for $W$, which we will denote $C_m(W)$. Here $m$ is a positive integer, and $C_1(W)$ is the usual generalized Catalan number. $C_m(W)$ counts the $m$-noncrossing partitions for $W$ and the $m$-clusters for $\Phi$. In this abstract, we will give an explicit description of a bijection between these two sets. The proof depends on a representation-theoretic reinterpretation of the problem, in terms of exceptional sequences of representations of quivers.

[fr]
Soit $W$ un groupe de réflexions fini et cristallographique, avec système de racines $\Phi$. Associé à $W$, il y a un entier positif, le nombre de Catalan généralisé, qui compte les amas dans l'algèbre amassée associée, les partitions non-croisées de $W$, et plusieurs autres ensembles intéressantes. Des bijections entre les amas et les partitions non-croisées ont été données par Reading et Athanasiadis et al. On peut encore généraliser le nombre de Catalan généralisé, obtenant le nombre Fuss-Catalan de $W$, que nous noterons $C_m(W)$. Ici $m$ est un entier positif, et $C_1(W)$ est le nombre Catalan généralisé standard. $C_m(W)$ compte les partitions $m$-non-croisées de $W$ et les $m$-amas de $\Phi$. Dans ce résumé, nous donnerons une bijection explicite entre ces deux ensembles. La démonstration dépend d'une réinterprétation des objets du point de vue des suites exceptionnelles de représentations de carquois.


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] $m$-noncrossing partitions, $m$-clusters, Fuss-Catalan numbers
Funding:
    Source : OpenAIRE Graph
  • Funder: Natural Sciences and Engineering Research Council of Canada

1 Document citing this article

Consultation statistics

This page has been seen 430 times.
This article's PDF has been downloaded 577 times.