Discrete Mathematics & Theoretical Computer Science |

- 1 Institutt for matematiske fag
- 2 Department of Mathematics and Statistics

Let $W$ be a finite crystallographic reflection group, with root system $\Phi$. Associated to $W$ there is a positive integer, the generalized Catalan number, which counts the clusters in the associated cluster algebra, the noncrossing partitions for $W$, and several other interesting sets. Bijections have been found between the clusters and the noncrossing partitions by Reading and Athanasiadis et al. There is a further generalization of the generalized Catalan number, sometimes called the Fuss-Catalan number for $W$, which we will denote $C_m(W)$. Here $m$ is a positive integer, and $C_1(W)$ is the usual generalized Catalan number. $C_m(W)$ counts the $m$-noncrossing partitions for $W$ and the $m$-clusters for $\Phi$. In this abstract, we will give an explicit description of a bijection between these two sets. The proof depends on a representation-theoretic reinterpretation of the problem, in terms of exceptional sequences of representations of quivers.

Source: HAL:hal-01185411v1

Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)

Section: Proceedings

Published on: January 1, 2009

Imported on: January 31, 2017

Keywords: $m$-noncrossing partitions,$m$-clusters,Fuss-Catalan numbers,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

Funding:

- Source : OpenAIRE Graph
- Funder: Natural Sciences and Engineering Research Council of Canada

This page has been seen 254 times.

This article's PDF has been downloaded 389 times.