Charles Buehrle ; Mark Skandera - A preorder-free construction of the Kazhdan-Lusztig representations of $S_n$, with connections to the Clausen representations

dmtcs:2736 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2736
A preorder-free construction of the Kazhdan-Lusztig representations of $S_n$, with connections to the Clausen representationsConference paper

Authors: Charles Buehrle 1; Mark Skandera ORCID1

  • 1 Department of Mathematics [Bethlehem, USA]

[en]
We use the polynomial ring $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$ to modify the Kazhdan-Lusztig construction of irreducible $S_n$-modules. This modified construction produces exactly the same matrices as the original construction in [$\textit{Invent. Math}$ $\mathbf{53}$ (1979)], but does not employ the Kazhdan-Lusztig preorders. We also show that our modules are related by unitriangular transition matrices to those constructed by Clausen in [$\textit{J. Symbolic Comput.}$ $\textbf{11}$ (1991)]. This provides a $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$-analog of results of Garsia-McLarnan in [$\textit{Adv. Math.}$ $\textbf{69}$ (1988)].

[fr]
Nous utilisons l'anneau $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$ pour modifier la construction Kazhdan-Lusztig des modules-$S_n$ irréductibles dans $\mathbb{C}[S_n]$. Cette construction modifiée produit exactement les mêmes matrices que la construction originale dans [$\textit{Invent. Math}$ $\mathbf{53}$ (1979)], mais sans employer les préordres de Kazhdan-Lusztig. Nous montrons aussi que nos modules sont reliés par des matrices unitriangulaires aux modules construits par Clausen dans [$\textit{J. Symbolic Comput.}$ $\textbf{11}$ (1991)]. Ce résultat donne un $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$-analogue des résultats de Garsia-McLarnan dans [$\textit{Adv. Math.}$ $\textbf{69}$ (1988)].


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Kazhdan-Lusztig, immanants, irreducible representations, symmetric group

Consultation statistics

This page has been seen 361 times.
This article's PDF has been downloaded 376 times.