Ghislain Fourier ; Masato Okado ; Anne Schilling
-
Perfectness of Kirillov―Reshetikhin crystals for nonexceptional types
dmtcs:2741 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2009,
DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
-
https://doi.org/10.46298/dmtcs.2741Perfectness of Kirillov―Reshetikhin crystals for nonexceptional typesConference paper
Authors: Ghislain Fourier 1; Masato Okado 2; Anne Schilling 3
NULL##NULL##NULL
Ghislain Fourier;Masato Okado;Anne Schilling
- 1 Mathematisches Institut, Universität zu Köln
- 2 Department of Mathematical Science
- 3 Department of Mathematics [Univ California Davis]
[en]
For nonexceptional types, we prove a conjecture of Hatayama et al. about the prefectness of Kirillov―Reshetikhin crystals.
[fr]
Pour les types non-exceptionnels, on démontre une conjecture de Hatayama et al. concernant la perfection des cristaux de Kirillov―Reshetikhin.
Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Crystal bases, combinatorial models for Kirillov―Reshetikhin crystals, perfectness
Funding:
Source : OpenAIRE Graph- FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652652
- Combinatorial Aspects of Representation Theory, Mathematical Physics and q-Series; Funder: National Science Foundation; Code: 0501101
- FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652641