Conrado Martínez ; Uwe Rösler
-
Partial Quicksort and Quickpartitionsort
dmtcs:2781 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2010,
DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10)
-
https://doi.org/10.46298/dmtcs.2781Partial Quicksort and QuickpartitionsortConference paper
Authors: Conrado Martínez 1; Uwe Rösler 2
NULL##NULL
Conrado Martínez;Uwe Rösler
- 1 Departament Llenguatges i Sistemes Informatics,
- 2 Mathematisches Seminar [Kiel]
Partial Quicksort sorts the $l$ smallest elements in a list of length $n$. We provide a complete running time analysis for this combination of Find and Quicksort. Further we give some optimal adapted versions, called Partition Quicksort, with an asymptotic running time $c_1l\ln l+c_2l+n+o(n)$. The constant $c_1$ can be as small as the information theoretic lower bound $\log_2 e$.
Volume: DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG], [en] searching, sorting, Find, Quicksort, divide and conquer algorithm, random algorithm, running time analysis, asymptotic distribution, optimal adapted algorithms, stochastic fixed point equation, contraction method