Qing-Hu Hou ; Guoce Xin - Constant term evaluation for summation of C-finite sequences

dmtcs:2806 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2806
Constant term evaluation for summation of C-finite sequencesConference paper

Authors: Qing-Hu Hou 1; Guoce Xin 2

  • 1 Center for Combinatorics [Nankai]
  • 2 Department of Mathematics

[en]
Based on constant term evaluation, we present a new method to compute a closed form of the summation $∑_k=0^n-1 ∏_j=1^r F_j(a_jn+b_jk+c_j)$, where ${F_j(k)} are $C$-finite sequences and $a_j$ and $a_j+b_j$ are nonnegative integers. Our algorithm is much faster than that of Greene and Wilf.

[fr]
En s'appuyant sur l'évaluation de termes constants, nous présentons une nouvelle méthode pour calculer une forme close de la somme $∑_k=0^n-1 ∏_j=1^r F_j(a_jn+b_jk+c_j)$, où les ${F_j(k)}$ sont des suites C-finies, et où les $a_j$ et les $a_j+b_j$ sont des entiers positifs ou nuls. Notre algorithme est beaucoup plus rapide que celui de Greene et Wilf.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] C-finite sequences, constant term, summation, closed form

Consultation statistics

This page has been seen 380 times.
This article's PDF has been downloaded 479 times.