Anders Claesson ; Svante Linusson - $n!$ matchings, $n!$ posets (extended abstract)

dmtcs:2817 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2817
$n!$ matchings, $n!$ posets (extended abstract)Article

Authors: Anders Claesson 1; Svante Linusson 2

  • 1 The Mathematics Institute, Reyjavik University
  • 2 Department of Mathematics

We show that there are $n!$ matchings on $2n$ points without, so called, left (neighbor) nestings. We also define a set of naturally labelled $(2+2)$-free posets, and show that there are $n!$ such posets on $n$ elements. Our work was inspired by Bousquet-Mélou, Claesson, Dukes and Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884―909]. They gave bijections between four classes of combinatorial objects: matchings with no neighbor nestings (due to Stoimenow), unlabelled $(2+2)$-free posets, permutations avoiding a specific pattern, and so called ascent sequences. We believe that certain statistics on our matchings and posets could generalize the work of Bousquet-Mélou et al. and we make a conjecture to that effect. We also identify natural subsets of matchings and posets that are equinumerous to the class of unlabeled $(2+2)$-free posets. We give bijections that show the equivalence of (neighbor) restrictions on nesting arcs with (neighbor) restrictions on crossing arcs. These bijections are thought to be of independent interest. One of the bijections maps via certain upper-triangular integer matrices that have recently been studied by Dukes and Parviainen [Electron. J. Combin. 17 (2010) #R53].


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: matching,poset,inversion table,permutation,ascent sequence,nesting,crossing,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

Consultation statistics

This page has been seen 233 times.
This article's PDF has been downloaded 184 times.