Andrew Crites - Extended Abstract for Enumerating Pattern Avoidance for Affine Permutations

dmtcs:2819 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2819
Extended Abstract for Enumerating Pattern Avoidance for Affine PermutationsConference paper

Authors: Andrew Crites 1

  • 1 Department of Mathematics [Seattle]

[en]
In this paper we study pattern avoidance for affine permutations. In particular, we show that for a given pattern $p$, there are only finitely many affine permutations in $\widetilde{S}_n$ that avoid $p$ if and only if $p$ avoids the pattern $321$. We then count the number of affine permutations that avoid a given pattern $p$ for each $p$ in $S_3$, as well as give some conjectures for the patterns in $S_4$. This paper is just an outline; the full version will appear elsewhere.

[fr]
Dans cet œuvre, on étudie comment les permutations affines évitent les motifs. Spécifiquement, on peut dire que pour le motif $p$, il existe un nombre limité de permutations affines dans $\widetilde{S}_n$ qui évite $p$ si et seulement si $p$ évite le motif $321$. Après, on compte le nombre de permutations affines qui évitent le motif $p$ pour chaque $p$ de $S_3$. Puis, on donne des conjectures pour les motifs de $S_4$. Ceci n'est qu'un aperçu; la version complète apparaîtra ailleurs.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] pattern avoidance, affine permutation, generating function, Catalan number
Funding:
    Source : OpenAIRE Graph
  • Computational/Combinatorial Considerations In Topology, Coxeter Groups, and Representation Theory; Funder: National Science Foundation; Code: 0800978

Consultation statistics

This page has been seen 371 times.
This article's PDF has been downloaded 482 times.