Andrew Crites - Extended Abstract for Enumerating Pattern Avoidance for Affine Permutations

dmtcs:2819 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2819
Extended Abstract for Enumerating Pattern Avoidance for Affine PermutationsConference paper

Authors: Andrew Crites 1

  • 1 Department of Mathematics [Seattle]

In this paper we study pattern avoidance for affine permutations. In particular, we show that for a given pattern p, there are only finitely many affine permutations in ˜Sn that avoid p if and only if p avoids the pattern 321. We then count the number of affine permutations that avoid a given pattern p for each p in S3, as well as give some conjectures for the patterns in S4. This paper is just an outline; the full version will appear elsewhere.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: pattern avoidance,affine permutation,generating function,Catalan number,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
Funding:
    Source : OpenAIRE Graph
  • Computational/Combinatorial Considerations In Topology, Coxeter Groups, and Representation Theory; Funder: National Science Foundation; Code: 0800978

Consultation statistics

This page has been seen 293 times.
This article's PDF has been downloaded 247 times.