Yasuhide Numata ; Satoshi Kuriki - On formulas for moments of the Wishart distributions as weighted generating functions of matchings

dmtcs:2836 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2836
On formulas for moments of the Wishart distributions as weighted generating functions of matchingsConference paper

Authors: Yasuhide Numata 1,2; Satoshi Kuriki 3,2

[en]
We consider the real and complex noncentral Wishart distributions. The moments of these distributions are shown to be expressed as weighted generating functions of graphs associated with the Wishart distributions. We give some bijections between sets of graphs related to moments of the real Wishart distribution and the complex noncentral Wishart distribution. By means of the bijections, we see that calculating these moments of a certain class the real Wishart distribution boils down to calculations for the case of complex Wishart distributions.

[fr]
Nous considérons les lois Wishart non-centrale réel et complexe. Les moments sont décrits comme fonctions génératrices de graphes associées avec les lois Wishart. Nous donnons bijections entre ensembles de graphes relatifs aux moments des lois Wishart non-centrale réel et complexe. Au moyen de la bijection, nous voyons que le calcul des moments d'une certaine classe la loi Wishart réel deviennent le calcul de moments de loi Wishart complexes.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] generating funtion, Hafnian, matching, moments formula, Wishart distribution.

2 Documents citing this article

Consultation statistics

This page has been seen 350 times.
This article's PDF has been downloaded 631 times.