Kyungyong Lee ; Li Li - On the diagonal ideal of $(\mathbb{C}^2)^n$ and $q,t$-Catalan numbers

dmtcs:2838 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2838
On the diagonal ideal of $(\mathbb{C}^2)^n$ and $q,t$-Catalan numbersConference paper

Authors: Kyungyong Lee 1; Li Li ORCID2

  • 1 Department of mathematics Purdue University
  • 2 Department of Mathematics [Urbana]

[en]
Let $I_n$ be the (big) diagonal ideal of $(\mathbb{C}^2)^n$. Haiman proved that the $q,t$-Catalan number is the Hilbert series of the graded vector space $M_n=\bigoplus_{d_1,d_2}(M_n)_{d_1,d_2}$ spanned by a minimal set of generators for $I_n$. We give simple upper bounds on $\textrm{dim} (M_n)_{d_1, d_2}$ in terms of partition numbers, and find all bi-degrees $(d_1,d_2)$ such that $\textrm{dim} (M_n)_{d_1, d_2}$ achieve the upper bounds. For such bi-degrees, we also find explicit bases for $(M_n)_{d_1, d_2}$.

[fr]
Soit $I_n$ l'idéal de la (grande) diagonale de $(\mathbb{C}^2)^n$. Haiman a démontré que le $q,t$-nombre de Catalan est la série de Hilbert de l'espace vectoriel gradué $M_n=\bigoplus_{d_1,d_2}(M_n)_{d_1,d_2}$ engendré par un ensemble minimal de générateurs de $I_n$. Nous obtenons des bornes supérieures simples pour $\textrm{dim} (M_n)_{d_1, d_2}$ en termes de nombres de partitions, ainsi que tous les bi-degrés $(d_1, d_2)$ pour lesquels ces bornes supérieures sont atteintes. Pour ces bi-degrés, nous trouvons aussi des bases explicites de $(M_n)_{d_1, d_2}$.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] $q, t$-Catalan number, diagonal ideal
Funding:
    Source : OpenAIRE Graph
  • Commutative Algebra of Alternating Polynomials; Funder: National Science Foundation; Code: 0901367

Consultation statistics

This page has been seen 311 times.
This article's PDF has been downloaded 562 times.