Kyungyong Lee ; Li Li
-
On the diagonal ideal of $(\mathbb{C}^2)^n$ and $q,t$-Catalan numbers
dmtcs:2838 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2010,
DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
-
https://doi.org/10.46298/dmtcs.2838
On the diagonal ideal of $(\mathbb{C}^2)^n$ and $q,t$-Catalan numbersArticle
Authors: Kyungyong Lee 1; Li Li 2
NULL##0000-0002-7163-6263
Kyungyong Lee;Li Li
1 Department of mathematics Purdue University
2 Department of Mathematics [Urbana]
Let $I_n$ be the (big) diagonal ideal of $(\mathbb{C}^2)^n$. Haiman proved that the $q,t$-Catalan number is the Hilbert series of the graded vector space $M_n=\bigoplus_{d_1,d_2}(M_n)_{d_1,d_2}$ spanned by a minimal set of generators for $I_n$. We give simple upper bounds on $\textrm{dim} (M_n)_{d_1, d_2}$ in terms of partition numbers, and find all bi-degrees $(d_1,d_2)$ such that $\textrm{dim} (M_n)_{d_1, d_2}$ achieve the upper bounds. For such bi-degrees, we also find explicit bases for $(M_n)_{d_1, d_2}$.