Susanna Fishel ; Monica Vazirani - A bijection between (bounded) dominant Shi regions and core partitions

dmtcs:2848 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2848
A bijection between (bounded) dominant Shi regions and core partitionsConference paper

Authors: Susanna Fishel 1; Monica Vazirani 2

  • 1 School of Mathematical and Statistical Sciences (Arizona, Tempe)
  • 2 Department of Mathematics [Univ California Davis]

[en]
It is well-known that Catalan numbers $C_n = \frac{1}{ n+1} \binom{2n}{n}$ count the number of dominant regions in the Shi arrangement of type $A$, and that they also count partitions which are both n-cores as well as $(n+1)$-cores. These concepts have natural extensions, which we call here the $m$-Catalan numbers and $m$-Shi arrangement. In this paper, we construct a bijection between dominant regions of the $m$-Shi arrangement and partitions which are both $n$-cores as well as $(mn+1)$-cores. We also modify our construction to produce a bijection between bounded dominant regions of the $m$-Shi arrangement and partitions which are both $n$-cores as well as $(mn-1)$-cores. The bijections are natural in the sense that they commute with the action of the affine symmetric group.

[fr]
Il est bien connu que les nombres de Catalan $C_n = \frac{1}{ n+1} \binom{2n}{n}$ comptent non seulement le nombre de régions dominantes dans le Shi arrangement de type $A$ mais aussi les partitions qui sont à la fois $n$-cœur et $(n+1)$-cœur. Ces concepts ont des extensions naturelles, que nous appelons ici les nombres $m$-Catalan et le $m$-Shi arrangement. Dans cet article, nous construisons une bijection entre régions dominantes du $m$-Shi arrangement et les partitions qui sont à la fois $n$-cœur et $(nm+1)$-coeur. Nous modifions également notre construction pour produire une bijection entre régions dominantes bornées du $m$-Shi arrangement et les partitions qui sont à la fois $n$-coeur et $(mn-1)$-cœur. Ces bijections sont naturelles dans le sens où elles commutent avec l'action du groupe affine symétrique.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] cores, symmetric group, Shi arrangement, Catalan numbers

1 Document citing this article

Consultation statistics

This page has been seen 413 times.
This article's PDF has been downloaded 473 times.