Olivier Bernardi ; Guillaume Chapuy - Counting unicellular maps on non-orientable surfaces

dmtcs:2859 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2859
Counting unicellular maps on non-orientable surfacesArticle

Authors: Olivier Bernardi ORCID1; Guillaume Chapuy 2

  • 1 Department of Mathematics [MIT]
  • 2 Department of Mathematics [Burnaby]

A unicellular map is the embedding of a connected graph in a surface in such a way that the complement of the graph is a topological disk. In this paper we give a bijective operation that relates unicellular maps on a non-orientable surface to unicellular maps of a lower topological type, with distinguished vertices. From that we obtain a recurrence equation that leads to (new) explicit counting formulas for non-orientable precubic (all vertices of degree 1 or 3) unicellular maps of fixed topology. We also determine asymptotic formulas for the number of all unicellular maps of fixed topology, when the number of edges goes to infinity. Our strategy is inspired by recent results obtained for the orientable case [Chapuy, PTRF 2010], but significant novelties are introduced: in particular we construct an involution which, in some sense, ``averages'' the effects of non-orientability. \par


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: ribbon graph,non-orientable surface,bijection,involution,One-face map,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
Funding:
    Source : OpenAIRE Graph
  • Combinatorial methods, from enumerative topology to random discrete structures and compact data representations.; Funder: European Commission; Code: 208471

9 Documents citing this article

Consultation statistics

This page has been seen 249 times.
This article's PDF has been downloaded 218 times.