Alexandre Blondin Massé ; Srecko Brlek ; Sébastien Labbé - Combinatorial aspects of Escher tilings

dmtcs:2868 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2868
Combinatorial aspects of Escher tilingsConference paper

Authors: Alexandre Blondin Massé 1,2; Srecko Brlek 1; Sébastien Labbé ORCID3,1

[en]
In the late 30's, Maurits Cornelis Escher astonished the artistic world by producing some puzzling drawings. In particular, the tesselations of the plane obtained by using a single tile appear to be a major concern in his work, drawing attention from the mathematical community. Since a tile in the continuous world can be approximated by a path on a sufficiently small square grid - a widely used method in applications using computer displays - the natural combinatorial object that models the tiles is the polyomino. As polyominoes are encoded by paths on a four letter alphabet coding their contours, the use of combinatorics on words for the study of tiling properties becomes relevant. In this paper we present several results, ranging from recognition of these tiles to their generation, leading also to some surprising links with the well-known sequences of Fibonacci and Pell.

[fr]
Lorsque Maurits Cornelis Escher commença à la fin des années 30 à produire des pavages du plan avec des tuiles, il étonna le monde artistique par la singularité de ses dessins. En particulier, les pavages du plan obtenus avec des copies d'une seule tuile apparaissent souvent dans son œuvre et ont attiré peu à peu l'attention de la communauté mathématique. Puisqu'une tuile dans le monde continu peut être approximée par un chemin sur un réseau carré suffisamment fin - une méthode universellement utilisée dans les applications utilisant des écrans graphiques - l'objet combinatoire qui modèle adéquatement la tuile est le polyomino. Comme ceux-ci sont naturellement codés par des chemins sur un alphabet de quatre lettres, l'utilisation de la combinatoire des mots devient pertinente pour l'étude des propriétés des tuiles pavantes. Nous présentons dans ce papier plusieurs résultats, allant de la reconnaissance de ces tuiles à leur génération, conduisant à des liens surprenants avec les célèbres suites de Fibonacci et de Pell.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Tesselations, Tilings, Polyomino, Fibonacci, Pell

1 Document citing this article

Consultation statistics

This page has been seen 417 times.
This article's PDF has been downloaded 656 times.