Eli Bagno ; Yonah Cherniavsky - Involutions of the Symmetric Group and Congruence B-Orbits (Extended Abstract)

dmtcs:2877 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2877
Involutions of the Symmetric Group and Congruence B-Orbits (Extended Abstract)Conference paper

Authors: Eli Bagno 1; Yonah Cherniavsky 2

[en]
We study the poset of Borel congruence classes of symmetric matrices ordered by containment of closures. We give a combinatorial description of this poset and calculate its rank function. We discuss the relation between this poset and the Bruhat poset of involutions of the symmetric group. Also we present the poset of Borel congruence classes of anti-symmetric matrices ordered by containment of closures. We show that there exists a bijection between the set of these classes and the set of involutions of the symmetric group. We give two formulas for the rank function of this poset.

[fr]
Nous étudions l'ensemble ordonné des classes de congruence de matrices symétriques ordonnées par containment de leurs fermetures. Nous donnons une description combinatoire de cet ensemble et calculons sa fonction rang. Nous étudions les relations entre cet ensemble et l'ensemble des involutions du groupe symétrique ordonné selon l'ordre de Bruhat. Nous montrons qu'il existe une bijection parmi l'ensemble ordonné de classes de congruences de Borel des matrices anti-symétriques et l'ensemble des involutions du groupe symétrique. On termine en donnant deux formules pour la fonction rang pour ce dernier ensemble.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Bruhat poset, congruence orbit, involutions of the symmetric group

Consultation statistics

This page has been seen 381 times.
This article's PDF has been downloaded 877 times.