Jason Bandlow ; Anne Schilling ; Mike Zabrocki
-
The Murnaghan―Nakayama rule for k-Schur functions
dmtcs:2894 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2011,
DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
-
https://doi.org/10.46298/dmtcs.2894
The Murnaghan―Nakayama rule for k-Schur functionsArticle
Authors: Jason Bandlow 1; Anne Schilling 2; Mike Zabrocki 3
NULL##NULL##0000-0002-6636-2392
Jason Bandlow;Anne Schilling;Mike Zabrocki
1 Department of Mathematics [Philadelphia]
2 Department of Mathematics [Univ California Davis]
3 Department of Mathematics and Statistics [Toronto]
We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra introduced by Lam and the affine analogue of noncommutative symmetric functions of Fomin and Greene.
Affine Combinatorics; Funder: National Science Foundation; Code: 1001256
FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652641
FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652652
Bibliographic References
10 Documents citing this article
Duc-Khanh Nguyen, 2023, A Generalization of the Murnaghan–Nakayama Rule for K-k-Schur and k-Schur Functions, arXiv (Cornell University), 2024, 6, pp. 4738-4766, 10.1093/imrn/rnad175, http://arxiv.org/abs/2212.02037.
Andrew Morrison, 2014, A Murgnahan-Nakayama rule for Schubert polynomials, Discrete Mathematics & Theoretical Computer Science, DMTCS Proceedings vol. AT,..., Proceedings, 10.46298/dmtcs.2420, https://doi.org/10.46298/dmtcs.2420.
Thomas Lam;Luc Lapointe;Jennifer Morse;Anne Schilling;Mark Shimozono;et al., arXiv (Cornell University), Stanley Symmetric Functions and Peterson Algebras, pp. 133-168, 2014, 10.1007/978-1-4939-0682-6_3, https://arxiv.org/abs/1007.2871.
Thomas Lam;Luc Lapointe;Jennifer Morse;Anne Schilling;Mark Shimozono;et al., Fields Institute monographs, Primer on k-Schur Functions, pp. 9-131, 2014, 10.1007/978-1-4939-0682-6_2.