The Murnaghan―Nakayama rule for k-Schur functionsConference paperAuthors: Jason Bandlow
1; Anne Schilling
2; Mike Zabrocki
3
NULL##NULL##0000-0002-6636-2392
Jason Bandlow;Anne Schilling;Mike Zabrocki
- 1 Department of Mathematics [Philadelphia]
- 2 Department of Mathematics [Univ California Davis]
- 3 Department of Mathematics and Statistics [Toronto]
[en]
We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra introduced by Lam and the affine analogue of noncommutative symmetric functions of Fomin and Greene.
[fr]
Nous prouvons une règle de Murnaghan-Nakayama pour les fonctions de k-Schur de Lapointe et Morse, c'est-à-dire que nous donnons une formule explicite pour le développement du produit d'une fonction symétrique "somme de puissances'' et d'une fonction de k-Schur en termes de fonctions k-Schur. Ceci est prouvé en utilisant les fonctions non commutatives k-Schur en termes d'algèbre nilCoxeter introduite par Lam et l'analogue affine des fonctions symétriques non commutatives de Fomin et Greene.
Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Murnaghan―Nayakama rule, symmetric functions, noncommutative symmetric functions, k-Schur functions
Funding:
Source : OpenAIRE Graph- FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652641
- Affine Combinatorics; Funder: National Science Foundation; Code: 1001256
- FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652652