Jason Bandlow ; Anne Schilling ; Mike Zabrocki - The Murnaghan―Nakayama rule for k-Schur functions

dmtcs:2894 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2894
The Murnaghan―Nakayama rule for k-Schur functions

Authors: Jason Bandlow ; Anne Schilling ; Mike Zabrocki ORCID-iD

    We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra introduced by Lam and the affine analogue of noncommutative symmetric functions of Fomin and Greene.


    Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
    Section: Proceedings
    Published on: January 1, 2011
    Imported on: January 31, 2017
    Keywords: Murnaghan―Nayakama rule,symmetric functions,noncommutative symmetric functions,k-Schur functions,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
    Fundings :
      Source : OpenAIRE Research Graph
    • FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652652
    • Affine Combinatorics; Funder: National Science Foundation; Code: 1001256
    • FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652641

    Share

    Consultation statistics

    This page has been seen 142 times.
    This article's PDF has been downloaded 308 times.