Saúl A. Blanco - Shortest path poset of Bruhat intervals

dmtcs:2902 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2902
Shortest path poset of Bruhat intervalsConference paper

Authors: Saúl A. Blanco ORCID1

  • 1 Department of Mathematics [Cornell]

[en]
Let $[u,v]$ be a Bruhat interval and $B(u,v)$ be its corresponding Bruhat graph. The combinatorial and topological structure of the longest $u-v$ paths of $B(u,v)$ has been extensively studied and is well-known. Nevertheless, not much is known of the remaining paths. Here we describe combinatorial properties of the shortest $u-v$ paths of $B(u,v)$. We also derive the non-negativity of some coefficients of the complete mcd-index of $[u,v]$.

[fr]
Soit $[u,v]$ un intervalle de Bruhat et $B(u,v)$ le graphe de Bruhat associé. La structure combinatoire et topologique des plus longs chemins de $u$ à $v$ dans $B(u,v)$ est bien comprise, mais on sait peu de chose des autres chemins. Nous décrivons ici les propriétés combinatoires des plus courts de chemins de $u$ à $v$. Nous prouvons aussi que certains coefficients du mcd-indice complet de $[u,v]$ sont positifs.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Bruhat interval, shortest-path poset, complete \textrmcd-index
Funding:
    Source : OpenAIRE Graph
  • Quasisymmetric Functions and Eulerian Enumeration; Funder: National Science Foundation; Code: 0555268

Consultation statistics

This page has been seen 309 times.
This article's PDF has been downloaded 455 times.