Takeshi Ikeda ; Hiroshi Naruse ; Yasuhide Numata - Bumping algorithm for set-valued shifted tableaux

dmtcs:2931 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2931
Bumping algorithm for set-valued shifted tableauxConference paper

Authors: Takeshi Ikeda 1; Hiroshi Naruse 2; Yasuhide Numata 3,4

[en]
We present an insertion algorithm of Robinson–Schensted type that applies to set-valued shifted Young tableaux. Our algorithm is a generalization of both set-valued non-shifted tableaux by Buch and non set-valued shifted tableaux by Worley and Sagan. As an application, we obtain a Pieri rule for a K-theoretic analogue of the Schur Q-functions.

[fr]
Nous présentons un algorithme d'insertion de Robinson–Schensted qui s'applique aux tableaux décalés à valeurs sur des ensembles. Notre algorithme est une généralisation de l'algorithme de Buch pour les tableaux à valeurs sur des ensembles et de l'algorithme de Worley et Sagan pour les tableaux décalés. Comme application, nous obtenons une formule de Pieri pour un analogue en K-théorie des Q-functions de Schur.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] set-valued shifted tableaux, insertion, Robinson―Schensted, Pieri rule, K-theory, Schur Q-functions

3 Documents citing this article

Consultation statistics

This page has been seen 387 times.
This article's PDF has been downloaded 527 times.