Yu. Baryshnikov ; L. Hickok ; N. Orlow ; S. Son - Stokes polyhedra for $X$-shaped polyminos

dmtcs:3005 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12) - https://doi.org/10.46298/dmtcs.3005
Stokes polyhedra for $X$-shaped polyminos

Authors: Yu. Baryshnikov ; L. Hickok ; N. Orlow ; S. Son

    Consider a pair of $\textit{interlacing regular convex polygons}$, each with $2(n + 2)$ vertices, which we will be referring to as $\textit{red}$ and $\textit{black}$ ones. One can place these vertices on the unit circle $|z | = 1$ in the complex plane; the vertices of the red polygon at $\epsilon^{2k}, k = 0, \ldots , 2n − 1$, of the black polygon at $\epsilon^{2k+1}, k = 0, \ldots , 2n − 1$; here $\epsilon = \exp(i \pi /(2n + 2))$. We assign to the vertices of each polygon alternating (within each polygon) signs. Note that all the pairwise intersections of red and black sides are oriented consistently. We declare the corresponding orientation positive.


    Volume: DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12)
    Section: Proceedings
    Published on: January 1, 2012
    Imported on: January 31, 2017
    Keywords: Stokes polyhedra,polyminos,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG]

    1 Document citing this article

    Share

    Consultation statistics

    This page has been seen 155 times.
    This article's PDF has been downloaded 161 times.