Chris Berg ; Mike Zabrocki - Symmetries of the k-bounded partition lattice

dmtcs:3023 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3023
Symmetries of the k-bounded partition lattice

Authors: Chris Berg 1,2,3; Mike Zabrocki ORCID-iD1,2

  • 1 Fields Institute for Research In Mathematical Sciences
  • 2 York University [Toronto]
  • 3 Laboratoire de combinatoire et d'informatique mathématique [Montréal]

We generalize the symmetry on Young's lattice, found by Suter, to a symmetry on the $k$-bounded partition lattice of Lapointe, Lascoux and Morse.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: cyclic symmetry, k-Schur functions,core partitions,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

Linked publications - datasets - softwares

Source : ScholeXplorer IsRelatedTo ARXIV math/0111192
Source : ScholeXplorer IsRelatedTo DOI 10.1016/s0097-3165(02)00012-2
Source : ScholeXplorer IsRelatedTo DOI 10.48550/arxiv.math/0111192
  • 10.1016/s0097-3165(02)00012-2
  • 10.48550/arxiv.math/0111192
  • math/0111192
Schur function analogs for a filtration of the symmetric function space

1 Document citing this article

Consultation statistics

This page has been seen 180 times.
This article's PDF has been downloaded 234 times.