Silke Horn - Tropical Oriented Matroids

dmtcs:3026 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3026
Tropical Oriented MatroidsArticle

Authors: Silke Horn 1

  • 1 Discrete Optimization [Darmstadt]

Tropical oriented matroids were defined by Ardila and Develin in 2007. They are a tropical analogue of classical oriented matroids in the sense that they encode the properties of the types of points in an arrangement of tropical hyperplanes – in much the same way as the covectors of (classical) oriented matroids describe the types in arrangements of linear hyperplanes. Not every oriented matroid can be realised by an arrangement of linear hyperplanes though. The famous Topological Representation Theorem by Folkman and Lawrence, however, states that every oriented matroid can be represented as an arrangement of $\textit{pseudo}$hyperplanes. Ardila and Develin proved that tropical oriented matroids can be represented as mixed subdivisions of dilated simplices. In this paper I prove that this correspondence is a bijection. Moreover, I present a tropical analogue for the Topological Representation Theorem.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: combinatorics, oriented matroids, discrete topology, tropical geometry,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

4 Documents citing this article

Consultation statistics

This page has been seen 300 times.
This article's PDF has been downloaded 598 times.