Norihiro Nakashima - Bases for modules of differential operators

dmtcs:3047 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3047
Bases for modules of differential operatorsConference paper

Authors: Norihiro Nakashima 1

  • 1 Department of Mathematics [Sapporo]

[en]
It is well-known that the derivation modules of Coxeter arrangements are free. Holm began to study the freeness of modules of differential operators on hyperplane arrangements. In this paper, we study the cases of the Coxter arrangements of type A, B and D. In this case, we prove that the modules of differential operators of order 2 are free. We give examples of all the 3-dimensional classical Coxeter arrangements. Two keys for the proof are ``Cauchy–Sylvester's theorem on compound determinants'' and ``Saito–Holm's criterion''.

[fr]
Il est connu que les modules de la dérivation d'arrangements de Coxeter sont libres. Holm a commencè à étudier les modules libres des opérateurs différentiels sur des compositions d'hyperplans. Dans cet article, nous étudions les cas des compositions de Coxter les types A, B et D. Dans ce cas, nous prouvons que les modules d’opérateurs différentiels d'ordre 2 sont libres. Nous donnons des exemples de toutes les compositions de Coxeter classiques de dimension 3. Les deux points clefs pour la preuve sont le théorème de Cauchy–Sylvester sur déterminants composés et le critère de Saito–Holm.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Coxeter arrangement, Cauchy―Sylvester's compound determinants, Schur functions

Consultation statistics

This page has been seen 361 times.
This article's PDF has been downloaded 371 times.