Chris Berg ; Franco Saliola ; Luis Serrano
-
The down operator and expansions of near rectangular k-Schur functions
dmtcs:3052 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2012,
DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
-
https://doi.org/10.46298/dmtcs.3052
The down operator and expansions of near rectangular k-Schur functionsArticle
Authors: Chris Berg 1,2,3; Franco Saliola 4,3; Luis Serrano 3
3 Laboratoire de combinatoire et d'informatique mathématique [Montréal]
4 Fields Institute for Research In Mathematical Sciences
We prove that the Lam-Shimozono ``down operator'' on the affine Weyl group induces a derivation of the affine Fomin-Stanley subalgebra of the affine nilCoxeter algebra. We use this to verify a conjecture of Berg, Bergeron, Pon and Zabrocki describing the expansion of k-Schur functions of ``near rectangles'' in the affine nilCoxeter algebra. Consequently, we obtain a combinatorial interpretation of the corresponding k-Littlewood–Richardson coefficients.
S. van Willigenburg, 2019, Dual graphs from noncommutative and quasisymmetric Schur functions, Proceedings of the American Mathematical Society, 148, 3, pp. 1063-1078, 10.1090/proc/14786, https://doi.org/10.1090/proc/14786.
Octavian Iordache, Lecture notes in intelligent transportation and infrastructure, Assimilation and Accommodation, pp. 91-111, 2018, 10.1007/978-3-030-01243-4_5.