Chris Berg ; Franco Saliola ; Luis Serrano - The down operator and expansions of near rectangular k-Schur functions

dmtcs:3052 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3052
The down operator and expansions of near rectangular k-Schur functionsConference paper

Authors: Chris Berg 1,2,3; Franco Saliola ORCID4,3; Luis Serrano ORCID3

[en]
We prove that the Lam-Shimozono ``down operator'' on the affine Weyl group induces a derivation of the affine Fomin-Stanley subalgebra of the affine nilCoxeter algebra. We use this to verify a conjecture of Berg, Bergeron, Pon and Zabrocki describing the expansion of k-Schur functions of ``near rectangles'' in the affine nilCoxeter algebra. Consequently, we obtain a combinatorial interpretation of the corresponding k-Littlewood–Richardson coefficients.

[fr]
Nous montrons que l’opérateur ``down'', défini par Lam et Shimozono sur le groupe de Weyl affine, induit une dérivation de la sous-algèbre affine de Fomin-Stanley de l'algèbre affine de nilCoxeter. Nous employons cette dérivation pour vérifier une conjecture de Berg, Bergeron, Pon et Zabrocki sur l'expansion des k-fonctions de Schur indexées par les partitions qui sont ``presque rectangles''. Par conséquent, nous obtenons une interprétation combinatoire des k-coefficients de Littlewood–Richardson correspondants.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] symmetric functions, k-Schur functions, affine Schubert calculus, dual graded graphs

1 Document citing this article

Consultation statistics

This page has been seen 395 times.
This article's PDF has been downloaded 530 times.