Matjaž Konvalinka ; Aaron Lauve - Skew Pieri Rules for Hall-Littlewood Functions

dmtcs:3054 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3054
Skew Pieri Rules for Hall-Littlewood FunctionsConference paper

Authors: Matjaž Konvalinka 1; Aaron Lauve 2

  • 1 Department of Mathematics
  • 2 Department of Mathematics and Statistics [Chicago]

[en]
We produce skew Pieri Rules for Hall–Littlewood functions in the spirit of Assaf and McNamara (FPSAC, 2010). The first two were conjectured by the first author (FPSAC, 2011). The key ingredients in the proofs are a q-binomial identity for skew partitions that are horizontal strips and a Hopf algebraic identity that expands products of skew elements in terms of the coproduct and antipode.

[fr]
Nous produisons quelques règles dissymètrique de Pieri pour les fonctions Hall–Littlewood au sens de Assaf et McNamara (FPSAC, 2010). Les premières deux règles ont ètè conjecturèe par le premier auteur (FPSAC, 2011). Les principaux ingrèdients dans les preuves sont une identitè q-binomiale pour les partitions dissymètrique qui sont bandes horizontales et une identitè de Hopf qui exprime les produits d'èlèments dissymètrique en termes du coproduit et de l'antipode.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Pieri Rules, Hall―Littlewood functions

1 Document citing this article

Consultation statistics

This page has been seen 337 times.
This article's PDF has been downloaded 476 times.