Alain Lascoux ; Jean-Christophe Novelli ; Jean-Yves Thibon - Noncommutative symmetric functions with matrix parameters

dmtcs:3059 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3059
Noncommutative symmetric functions with matrix parametersConference paper

Authors: Alain Lascoux 1; Jean-Christophe Novelli 1; Jean-Yves Thibon ORCID1

[en]
We define new families of noncommutative symmetric functions and quasi-symmetric functions depending on two matrices of parameters, and more generally on parameters associated with paths in a binary tree. Appropriate specializations of both matrices then give back the two-vector families of Hivert, Lascoux, and Thibon and the noncommutative Macdonald functions of Bergeron and Zabrocki.

[fr]
Nous définissons de nouvelles familles de fonctions symétriques non-commutatives et de fonctions quasi-symétriques, dépendant de deux matrices de paramètres, et plus généralement, de paramètres associés à des chemins dans un arbre binaire. Pour des spécialisations appropriées, on retrouve les familles à deux vecteurs de Hivert-Lascoux-Thibon et les fonctions de Macdonald non-commutatives de Bergeron-Zabrocki.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Noncommutative symmetric functions, Quasi-symmetric functions, Macdonald polynomials

2 Documents citing this article

Consultation statistics

This page has been seen 426 times.
This article's PDF has been downloaded 485 times.