Akihiro Higashitani - Classification of Ehrhart polynomials of integral simplices

dmtcs:3065 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3065
Classification of Ehrhart polynomials of integral simplicesConference paper

Authors: Akihiro Higashitani 1

  • 1 Department of Pure and Applied Mathematics

[en]
Let $δ (\mathcal{P} )=(δ _0,δ _1,\ldots,δ _d)$ be the $δ$ -vector of an integral convex polytope $\mathcal{P}$ of dimension $d$. First, by using two well-known inequalities on $δ$ -vectors, we classify the possible $δ$ -vectors with $\sum_{i=0}^d δ _i ≤3$. Moreover, by means of Hermite normal forms of square matrices, we also classify the possible $δ$ -vectors with $\sum_{i=0}^d δ _i = 4$. In addition, for $\sum_{i=0}^d δ _i ≥5$, we characterize the $δ$ -vectors of integral simplices when $\sum_{i=0}^d δ _i$ is prime.

[fr]
Soit $δ (\mathcal{P} )=(δ _0,δ _1,\ldots,δ _d)$ le $δ$ -vecteur d'un polytope intégrante de dimension d. Tout d'abord, en utilisant deux bien connus des inégalités sur $δ$ -vecteurs, nous classons les $δ$ -vecteurs possibles avec $\sum_{i=0}^d δ _i ≤3$ En outre, par le biais de Hermite formes normales, nous avons également classer les $δ$ -vecteurs avec $\sum_{i=0}^d δ _i = 4$. De plus, pour $\sum_{i=0}^d δ _i ≥5$, nous caractérisons les $δ$-vecteurs des simplex inégalités lorsque $\sum_{i=0}^d δ _i$ est premier.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Ehrhart polynomial, δ -vector, integral convex polytope, integral simplex.

1 Document citing this article

Consultation statistics

This page has been seen 317 times.
This article's PDF has been downloaded 910 times.