Steffen Oppermann ; Hugh Thomas - Triangulations of cyclic polytopes

dmtcs:3068 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3068
Triangulations of cyclic polytopesConference paper

Authors: Steffen Oppermann 1; Hugh Thomas 2

  • 1 Institutt for Matematiske Fag [Trondheim]
  • 2 Department of Mathematics and Statistics

[en]
We give a new description of the combinatorics of triangulations of even-dimensional cyclic polytopes, and of their bistellar flips. We show that the tropical exchange relation governing the number of intersections between diagonals of a polygon and a lamination (which generalizes to arbitrary surfaces) can also be generalized in a different way, to the setting of higher dimensional cyclic polytopes.

[fr]
Nous donnons une nouvelle description de la combinatoire des triangulations des polytopes cycliques, et de leurs mouvements bistellaires. Nous démontrons que la relation d’échange qui gouverne le nombre d'intersections entre les diagonaux d'une polygone et une lamination (qui peut être généralisée à une surface arbitraire) peut également être généralisée au cadre des polytopes cycliques.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] cyclic polytopes, triangulation, bistellar flip, cluster algebra, tropical arithmetic
Funding:
    Source : OpenAIRE Graph
  • Funder: Natural Sciences and Engineering Research Council of Canada

1 Document citing this article

Consultation statistics

This page has been seen 362 times.
This article's PDF has been downloaded 1480 times.