Steffen Oppermann ; Hugh Thomas - Triangulations of cyclic polytopes

dmtcs:3068 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3068
Triangulations of cyclic polytopes

Authors: Steffen Oppermann ; Hugh Thomas

    We give a new description of the combinatorics of triangulations of even-dimensional cyclic polytopes, and of their bistellar flips. We show that the tropical exchange relation governing the number of intersections between diagonals of a polygon and a lamination (which generalizes to arbitrary surfaces) can also be generalized in a different way, to the setting of higher dimensional cyclic polytopes.


    Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
    Section: Proceedings
    Published on: January 1, 2012
    Imported on: January 31, 2017
    Keywords: cluster algebra, tropical arithmetic,cyclic polytopes, triangulation, bistellar flip,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
    Fundings :
      Source : OpenAIRE Research Graph
    • Funder: Natural Sciences and Engineering Research Council of Canada

    Share

    Consultation statistics

    This page has been seen 139 times.
    This article's PDF has been downloaded 637 times.