Matthieu Josuat-Vergès - Cumulants of the q-semicircular law, Tutte polynomials, and heaps

dmtcs:3074 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3074
Cumulants of the q-semicircular law, Tutte polynomials, and heapsConference paper

Authors: Matthieu Josuat-Vergès ORCID1

[en]
The q-semicircular law as introduced by Bożejko and Speicher interpolates between the Gaussian law and the semicircular law, and its moments have a combinatorial interpretation in terms of matchings and crossings. We prove that the cumulants of this law are, up to some factor, polynomials in q with nonnegative coefficients. This is done by showing that they are obtained by an enumeration of connected matchings, weighted by the evaluation at (1,q) of a Tutte polynomial. The two particular cases q=0 and q=2 have also alternative proofs, related with the fact that these particular evaluation of the Tutte polynomials count some orientations on graphs. Our methods also give a combinatorial model for the cumulants of the free Poisson law.

[fr]
La loi q-semicirculaire introduite par Bożejko et Speicher interpole entre la loi gaussienne et la loi semi-circulaire, et ses moments ont une interprétation combinatoire en termes de couplages et croisements. Nous prouvons que les cumulants de cette loi sont, à un facteur près, des polynômes en q à coefficients positifs. La méthode consiste à obtenir ces cumulants par une énumération de couplages connexes, pondérés par l’évaluation en (1,q) d'un polynôme de Tutte. Les cas particuliers q=0 et q=2 ont une preuve alternative, reliè au fait que des évaluations particulières du polynôme de Tutte comptent certaines orientations de graphes. Nos méthodes donnent aussi un modèle combinatoire aux cumulants de la loi de Poisson libre.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] moments, cumulants, matchings, Tutte polynomials, heaps
Funding:
    Source : OpenAIRE Graph
  • Compact enumeration formulas for generalized partitions; Code: Y 463

13 Documents citing this article

Consultation statistics

This page has been seen 360 times.
This article's PDF has been downloaded 315 times.