Avinash J. Dalal ; Jennifer Morse - The ABC's of affine Grassmannians and Hall-Littlewood polynomials

dmtcs:3095 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3095
The ABC's of affine Grassmannians and Hall-Littlewood polynomialsConference paper

Authors: Avinash J. Dalal 1; Jennifer Morse 1

  • 1 Department of mathematics [Philadelphie]

[en]
We give a new description of the Pieri rule for $k$-Schur functions using the Bruhat order on the affine type-$A$ Weyl group. In doing so, we prove a new combinatorial formula for representatives of the Schubert classes for the cohomology of affine Grassmannians. We show how new combinatorics involved in our formulas gives the Kostka-Foulkes polynomials and discuss how this can be applied to study the transition matrices between Hall-Littlewood and $k$-Schur functions.

[fr]
Nous présentons une nouvelle description, issue de l'ordre de Bruhat du groupe de Weyl affine de type $A$, de la règle de Pieri pour les fonctions $k$-Schur. Ce faisant, nous obtenons une nouvelle formule combinatoire pour les représentants des classes de Schubert de la cohomologie des Grassmannienne affines. Nous décrivons aussi comment notre approche permet d'obtenir les polynômes de Kostka-Foulkes et comment elle peut être appliquée à l’étude des matrices de transition entre les polynômes de Hall-Littlewood et les fonctions $k$-Schur.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] $k$-Schur functions, Pieri rule, Bruhat order, Macdonald polynomials, Hall-Littlewood polynomials, $k$-tableaux
Funding:
    Source : OpenAIRE Graph
  • Refined symmetric functions and affine analogs in combinatorics; Funder: National Science Foundation; Code: 0638625
  • FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652641
  • Combinatorics of affine Schubert calculus, K-theory, and Macdonald polynomials; Funder: National Science Foundation; Code: 1001898

1 Document citing this article

Consultation statistics

This page has been seen 432 times.
This article's PDF has been downloaded 498 times.