Richard P. Anstee ; Peter Keevash - Pairwise Intersections and Forbidden Configurations

dmtcs:3426 - Discrete Mathematics & Theoretical Computer Science, January 1, 2005, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) - https://doi.org/10.46298/dmtcs.3426
Pairwise Intersections and Forbidden ConfigurationsArticle

Authors: Richard P. Anstee 1; Peter Keevash 2

  • 1 Department of Mathematics [Vancouver]
  • 2 Department of Applied & Computational Mathematics

Let $f_m(a,b,c,d)$ denote the maximum size of a family $\mathcal{F}$ of subsets of an $m$-element set for which there is no pair of subsets $A,B \in \mathcal{F}$ with $|A \cap B| \geq a$, $|\bar{A} \cap B| \geq b$, $|A \cap \bar{B}| \geq c$, and $|\bar{A} \cap \bar{B}| \geq d$. By symmetry we can assume $a \geq d$ and $b \geq c$. We show that $f_m(a,b,c,d)$ is $\Theta (m^{a+b-1})$ if either $b > c$ or $a,b \geq 1$. We also show that $f_m(0,b,b,0)$ is $\Theta (m^b)$ and $f_m(a,0,0,d)$ is $\Theta (m^a)$. This can be viewed as a result concerning forbidden configurations and is further evidence for a conjecture of Anstee and Sali. Our key tool is a strong stability version of the Complete Intersection Theorem of Ahlswede and Khachatrian, which is of independent interest.


Volume: DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
Section: Proceedings
Published on: January 1, 2005
Imported on: May 10, 2017
Keywords: forbidden configurations,extremal set theory,intersecting set systems,uniform set systems,(0 1)-matrices,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]
Funding:
    Source : OpenAIRE Graph
  • Funder: Natural Sciences and Engineering Research Council of Canada

Consultation statistics

This page has been seen 250 times.
This article's PDF has been downloaded 316 times.