Richard Anstee ; Balin Fleming ; Zoltán Füredi ; Attila Sali - Color critical hypergraphs and forbidden configurations

dmtcs:3432 - Discrete Mathematics & Theoretical Computer Science, January 1, 2005, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) - https://doi.org/10.46298/dmtcs.3432
Color critical hypergraphs and forbidden configurationsArticle

Authors: Richard Anstee 1; Balin Fleming 1; Zoltán Füredi 2,3; Attila Sali 2

  • 1 Department of Mathematics [Vancouver]
  • 2 Alfréd Rényi Institute of Mathematics
  • 3 Department of Mathematics [Urbana]

The present paper connects sharpenings of Sauer's bound on forbidden configurations with color critical hypergraphs. We define a matrix to be \emphsimple if it is a $(0,1)-matrix$ with no repeated columns. Let $F$ be $a k× l (0,1)-matrix$ (the forbidden configuration). Assume $A$ is an $m× n$ simple matrix which has no submatrix which is a row and column permutation of $F$. We define $forb(m,F)$ as the best possible upper bound on n, for such a matrix $A$, which depends on m and $F$. It is known that $forb(m,F)=O(m^k)$ for any $F$, and Sauer's bond states that $forb(m,F)=O(m^k-1)$ fore simple $F$. We give sufficient condition for non-simple $F$ to have the same bound using linear algebra methods to prove a generalization of a result of Lovász on color critical hypergraphs.


Volume: DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
Section: Proceedings
Published on: January 1, 2005
Imported on: May 10, 2017
Keywords: forbidden configuration,color critical hypergraph,linear algebra method,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]
Funding:
    Source : OpenAIRE Graph
  • Funder: Natural Sciences and Engineering Research Council of Canada

5 Documents citing this article

Consultation statistics

This page has been seen 218 times.
This article's PDF has been downloaded 233 times.