Margaret Archibald ; Arnold Knopfmacher
-
Samples of geometric random variables with multiplicity constraints
dmtcs:3490 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2006,
DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
-
https://doi.org/10.46298/dmtcs.3490Samples of geometric random variables with multiplicity constraintsConference paper
Authors: Margaret Archibald 1; Arnold Knopfmacher 1
NULL##NULL
Margaret Archibald;Arnold Knopfmacher
- 1 The John Knopfmacher Centre for Applicable Analysis and Number Theory [Johannesburg]
We investigate the probability that a sample $\Gamma=(\Gamma_1,\Gamma_2,\ldots,\Gamma_n)$ of independent, identically distributed random variables with a geometric distribution has no elements occurring exactly $j$ times, where $j$ belongs to a specified finite $\textit{'forbidden set'}$ $A$ of multiplicities. Specific choices of the set $A$ enable one to determine the asymptotic probabilities that such a sample has no variable occuring with multiplicity $b$, or which has all multiplicities greater than $b$, for any fixed integer $b \geq 1$.
Volume: DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
Section: Proceedings
Published on: January 1, 2006
Imported on: May 10, 2017
Keywords: [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] Geometric random variable, Mellin transform, Poisson transform, multiplicity