Sylvie Corteel ; Jeremy Lovejoy ; Olivier Mallet - An extension to overpartitions of Rogers-Ramanujan identities for even moduli

dmtcs:3498 - Discrete Mathematics & Theoretical Computer Science, January 1, 2006, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities - https://doi.org/10.46298/dmtcs.3498
An extension to overpartitions of Rogers-Ramanujan identities for even moduliArticle

Authors: Sylvie Corteel 1; Jeremy Lovejoy 2; Olivier Mallet 2

  • 1 Laboratoire de Recherche en Informatique
  • 2 Laboratoire d'informatique Algorithmique : Fondements et Applications

We investigate class of well-poised basic hypergeometric series $\tilde{J}_{k,i}(a;x;q)$, interpreting these series as generating functions for overpartitions defined by multiplicity conditions. We also show how to interpret the $\tilde{J}_{k,i}(a;1;q)$ as generating functions for overpartitions whose successive ranks are bounded, for overpartitions that are invariant under a certain class of conjugations, and for special restricted lattice paths. We highlight the cases $(a,q) \to (1/q,q)$, $(1/q,q^2)$, and $(0,q)$, where some of the functions $\tilde{J}_{k,i}(a;x;q)$ become infinite products. The latter case corresponds to Bressoud's family of Rogers-Ramanujan identities for even moduli.


Volume: DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
Section: Proceedings
Published on: January 1, 2006
Imported on: May 10, 2017
Keywords: Partitions,overpartitions,Rogers-Ramanujan identities,lattice paths,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

Consultation statistics

This page has been seen 220 times.
This article's PDF has been downloaded 211 times.