A \emphk-queue layout of a graph G consists of a linear order σ of V(G), and a partition of E(G) into k sets, each of which contains no two edges that are nested in σ . This paper studies queue layouts of graph products and powers
Petr Gregor;Riste Škrekovski;Vida Vukašinović, 2011, On the queue-number of the hypercube, Electronic Notes in Discrete Mathematics, 38, pp. 413-418, 10.1016/j.endm.2011.09.067.
Kung-Jui Pai;Jou-Ming Chang;Yue-Li Wang, 2009, A new upper bound on the queuenumber of hypercubes, Discrete Mathematics, 310, 4, pp. 935-939, 10.1016/j.disc.2009.09.007.
Kung-Jui Pai;Jou-Ming Chang;Yue-Li Wang, 2009, Upper bounds on the queuenumber of k-ary n-cubes, Information Processing Letters, 110, 2, pp. 50-56, 10.1016/j.ipl.2009.10.006.
Toru Hasunuma;Misa Hirota, 2007, An improved upper bound on the queuenumber of the hypercube, Information Processing Letters, 104, 2, pp. 41-44, 10.1016/j.ipl.2007.05.006.