Discrete Mathematics & Theoretical Computer Science |
Let $\sigma$ be a random permutation chosen uniformly over the symmetric group $\mathfrak{S}_n$. We study a new "process-valued" statistic of $\sigma$, which appears in the domain of computational biology to construct tests of similarity between ordered lists of genes. More precisely, we consider the following "partial sums": $Y^{(n)}_{p,q} = \mathrm{card} \{1 \leq i \leq p : \sigma_i \leq q \}$ for $0 \leq p,q \leq n$. We show that a suitable normalization of $Y^{(n)}$ converges weakly to a bivariate tied down brownian bridge on $[0,1]^2$, i.e. a continuous centered gaussian process $X^{\infty}_{s,t}$ of covariance: $\mathbb{E}[X^{\infty}_{s,t}X^{\infty}_{s',t'}] = (min(s,s')-ss')(min(t,t')-tt')$.