Uta Freiberg ; Christoph Thäle
-
A Markov Chain Algorithm for determining Crossing Times through nested Graphs
dmtcs:3587 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2008,
DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
-
https://doi.org/10.46298/dmtcs.3587
A Markov Chain Algorithm for determining Crossing Times through nested GraphsArticle
Authors: Uta Freiberg 1; Christoph Thäle 2,3
NULL##NULL
Uta Freiberg;Christoph Thäle
1 Fakultät für Mathematik und Informatik [Jena]
2 Département de Mathématiques - Université de Fribourg
3 Département de Mathématiques [Fribourg]
According to the by now established theory developed in order to define a Laplacian or ― equivalently ― a Brownian motion on a nested fractal, one has to solve certain renormalization problems. In this paper, we present a Markov chain algorithm solving the problem for certain classes of simple fractals $K$ provided that there exists a unique Brownian motion and hence, a unique Laplacian on $K$.
Uta Renata Freiberg, Applied and numerical harmonic analysis, Some Remarks on the Hausdorff and Spectral Dimension of V-Variable Nested Fractals, pp. 267-282, 2010, 10.1007/978-0-8176-4888-6_17.