A Markov Chain Algorithm for determining Crossing Times through nested GraphsConference paper
Authors: Uta Freiberg 1; Christoph Thäle 2,3
NULL##NULL
Uta Freiberg;Christoph Thäle
- 1 Fakultät für Mathematik und Informatik [Jena]
- 2 Département de Mathématiques - Université de Fribourg
- 3 Département de Mathématiques [Fribourg]
According to the by now established theory developed in order to define a Laplacian or ― equivalently ― a Brownian motion on a nested fractal, one has to solve certain renormalization problems. In this paper, we present a Markov chain algorithm solving the problem for certain classes of simple fractals $K$ provided that there exists a unique Brownian motion and hence, a unique Laplacian on $K$.
Volume: DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] (nested) fractal, self―similarity, walk dimension, crossing time