Adrien Boussicault ; Jean-Gabriel Luque - Staircase Macdonald polynomials and the $q$-Discriminant

dmtcs:3601 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) - https://doi.org/10.46298/dmtcs.3601
Staircase Macdonald polynomials and the $q$-DiscriminantConference paper

Authors: Adrien Boussicault 1; Jean-Gabriel Luque 1

[en]
We prove that a $q$-deformation $\mathfrak{D}_k(\mathbb{X};q)$ of the powers of the discriminant is equal, up to a normalization, to a specialization of a Macdonald polynomial indexed by a staircase partition. We investigate the expansion of $\mathfrak{D}_k(\mathbb{X};q)$ on different bases of symmetric functions. In particular, we show that its expansion on the monomial basis can be explicitly described in terms of standard tableaux and we generalize a result of King-Toumazet-Wybourne about the expansion of the $q$-discriminant on the Schur basis.

[fr]
Nous montrons qu’une $q$-déformation $\mathfrak{D}_k(\mathbb{X};q)$ des puissances du discriminant est égale, à un coefficient de normalisation près, à un polynôme de Macdonald indexé par une partition escalier pour une certaine spécialisation des paramètres. Nous examinons les développements de $\mathfrak{D}_k(\mathbb{X};q)$ dans différentes bases de fonctions symétriques. En particulier, nous montrons que son écriture dans la base des fonctions monomiales peut être explicitement décrite en terme de tableaux standard et nous généralisons un résultat de King-Toumazet-Wybourne sur le développement du $q$-discriminant dans la base de Schur.


Volume: DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] discriminant

1 Document citing this article

Consultation statistics

This page has been seen 299 times.
This article's PDF has been downloaded 516 times.