Drew Armstrong - The Sorting Order on a Coxeter Group

dmtcs:3602 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) - https://doi.org/10.46298/dmtcs.3602
The Sorting Order on a Coxeter GroupArticle

Authors: Drew Armstrong 1

  • 1 School of Mathematics

Let $(W,S)$ be an arbitrary Coxeter system. For each sequence $\omega =(\omega_1,\omega_2,\ldots) \in S^{\ast}$ in the generators we define a partial order― called the $\omega \mathsf{-sorting order}$ ―on the set of group elements $W_{\omega} \subseteq W$ that occur as finite subwords of $\omega$ . We show that the $\omega$-sorting order is a supersolvable join-distributive lattice and that it is strictly between the weak and strong Bruhat orders on the group. Moreover, the $\omega$-sorting order is a "maximal lattice'' in the sense that the addition of any collection of edges from the Bruhat order results in a nonlattice. Along the way we define a class of structures called $\mathsf{supersolvable}$ $\mathsf{antimatroids}$ and we show that these are equivalent to the class of supersolvable join-distributive lattices.


Volume: DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: Coxeter group,join-distributive lattice,supersolvable lattice,antimatroid,convex geometry,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
Funding:
    Source : OpenAIRE Graph
  • PostDoctoral Research Fellowship; Funder: National Science Foundation; Code: 0603567

15 Documents citing this article

Consultation statistics

This page has been seen 218 times.
This article's PDF has been downloaded 181 times.