Discrete Mathematics & Theoretical Computer Science |
For $m$ a non-negative integer and $G$ a Coxeter group, we denote by $\mathbf{QI_m}(G)$ the ring of $m$-quasiinvariants of $G$, as defined by Chalykh, Feigin, and Veselov. These form a nested series of rings, with $\mathbf{QI_0}(G)$ the whole polynomial ring, and the limit $\mathbf{QI}_{\infty}(G)$ the usual ring of invariants. Remarkably, the ring $\mathbf{QI_m}(G)$ is freely generated over the ideal generated by the invariants of $G$ without constant term, and the quotient is isomorphic to the left regular representation of $G$. However, even in the case of the symmetric group, no basis for $\mathbf{QI_m}(G)$ is known. We provide a new description of $\mathbf{QI_m}(S_n)$, and use this to give a basis for the isotypic component of $\mathbf{QI_m}(S_n)$ indexed by the shape $[n-1,1]$.