Philippe Duchon - On the link pattern distribution of quarter-turn symmetric FPL configurations

dmtcs:3644 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) - https://doi.org/10.46298/dmtcs.3644
On the link pattern distribution of quarter-turn symmetric FPL configurationsConference paper

Authors: Philippe Duchon 1

[en]
We present new conjectures on the distribution of link patterns for fully-packed loop (FPL) configurations that are invariant, or almost invariant, under a quarter turn rotation, extending previous conjectures of Razumov and Stroganov and of de Gier. We prove a special case, showing that the link pattern that is conjectured to be the rarest does have the prescribed probability. As a byproduct, we get a formula for the enumeration of a new class of quasi-symmetry of plane partitions.

[fr]
Nous présentons de nouvelles conjectures portant sur la distribution des schémas de couplage des configurations de boucles compactes (FPL) invariantes, ou presque invariantes, par une rotation d'un quart de tour. Ces nouvelles conjectures étendent des conjectures précédentes dues à Razumov et Stroganov et à de Gier. Dans chaque cas, nous prouvons un cas particulier, en démontrant que le schéma de couplage conjecturé pour être le plus rare a effectivement la probabilité prédite. Nous obtenons également une formule pour l'énumération d'une nouvelle classe de quasi-symétrie de partitions planes.


Volume: DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] fully packed loop model, rhombus tilings, plane partitions, nonintersecting lattice paths

1 Document citing this article

Consultation statistics

This page has been seen 369 times.
This article's PDF has been downloaded 280 times.