This work is concerned with the perimeter enumeration of column-convex polyominoes. We consider both the rectangular lattice and the hexagonal lattice. For the rectangular lattice, two formulas for the generating function (gf) already exist and, to all appearances, neither of them admits of a further simplification. We first rederive those two formulas (so as to make the paper self-contained), and then we enrich the rectangular lattice gf with some additional variables. That done, we make a change of variables, which (practically) produces the hexagonal lattice gf. This latter gf was first found by Lin and Wu in 1990. However, our present formula, in addition to having a simpler form, also allows a substantially easier Taylor series expansion. As to the methods, our one is descended from algebraic languages, whereas Lin and Wu used the Temperley methodology.

Source : oai:HAL:hal-00966512v1

Volume: Vol. 9 no. 1

Section: Combinatorics

Published on: January 1, 2007

Submitted on: March 26, 2015

Keywords: [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

This page has been seen 85 times.

This article's PDF has been downloaded 81 times.