Total domination in K₅- and K₆-covered graphsArticle
Authors: Odile Favaron 1; H. Karami 2; S. M. Sheikholeslami 2
NULL##NULL##NULL
Odile Favaron;H. Karami;S. M. Sheikholeslami
1 Laboratoire de Recherche en Informatique
2 Department of Mathematics [Tabriz, Iran]
A graph G is Kr-covered if each vertex of G is contained in a Kr-clique. Let $\gamma_t(G)$ denote the total domination number of G. It has been conjectured that every Kr-covered graph of order n with no Kr-component satisfies $\gamma_t(G) \le \frac{2n}{r+1}$. We prove that this conjecture is true for r = 5 and 6.