On certain non-unique solutions of the Stieltjes moment problem
Authors: K. A. Penson 1; Pawel Blasiak 2; Gérard Duchamp 3; A. Horzela 2; A. I. Solomon 4
NULL##0000-0002-3457-2870##NULL##NULL##NULL
K. A. Penson;Pawel Blasiak;Gérard Duchamp;A. Horzela;A. I. Solomon
1 Laboratoire de Physique Théorique de la Matière Condensée
2 H. Niewodniczanski Institute of Nuclear Physics
3 Laboratoire d'Informatique de Paris-Nord
4 Department of Physics and Astronomy [Milton Keynes]
We construct explicit solutions of a number of Stieltjes moment problems based on moments of the form ${\rho}_{1}^{(r)}(n)=(2rn)!$ and ${\rho}_{2}^{(r)}(n)=[(rn)!]^{2}$, $r=1,2,\dots$, $n=0,1,2,\dots$, \textit{i.e.} we find functions $W^{(r)}_{1,2}(x)>0$ satisfying $\int_{0}^{\infty}x^{n}W^{(r)}_{1,2}(x)dx = {\rho}_{1,2}^{(r)}(n)$. It is shown using criteria for uniqueness and non-uniqueness (Carleman, Krein, Berg, Pakes, Stoyanov) that for $r>1$ both ${\rho}_{1,2}^{(r)}(n)$ give rise to non-unique solutions. Examples of such solutions are constructed using the technique of the inverse Mellin transform supplemented by a Mellin convolution. We outline a general method of generating non-unique solutions for moment problems generalizing ${\rho}_{1,2}^{(r)}(n)$, such as the product ${\rho}_{1}^{(r)}(n)\cdot{\rho}_{2}^{(r)}(n)$ and $[(rn)!]^{p}$, $p=3,4,\dots$.
NEW COHERENT STATES ASSOCIATED WITH NON-COMPACT GROUPS.
2 Documents citing this article
Source : OpenCitations
Gรณrska, Katarzyna; Lattanzi, Ambra; Dattoli, Giuseppe, 2018, Mittag-Leffler Function And Fractional Differential Equations, Fractional Calculus And Applied Analysis, 21, 1, pp. 220-236, 10.1515/fca-2018-0014.
Ostrovska, Sofiya; Stoyanov, Jordan, 2010, A New Proof That The Product Of Three Or More Exponential Random Variables Is Moment-Indeterminate, Statistics & Probability Letters, 80, 9-10, pp. 792-796, 10.1016/j.spl.2010.01.012.