On the connectedness and diameter of a geometric Johnson graphArticleAuthors: Crevel Bautista-Santiago
1; Javier Cano
2; Ruy Fabila-Monroy
3; David Flores-Peñaloza
4; Hernàn González-Aguilar
5; Dolores Lara
6; Eliseo Sarmiento
7; Jorge Urrutia
2
NULL##NULL##NULL##NULL##NULL##NULL##0000-0003-0649-7786##NULL
Crevel Bautista-Santiago;Javier Cano;Ruy Fabila-Monroy;David Flores-Peñaloza;Hernàn González-Aguilar;Dolores Lara;Eliseo Sarmiento;Jorge Urrutia
- 1 Division de Ciencas Basicas e Ingeniera [Azcapotzalco]
- 2 Instituto de Matematicas [México]
- 3 Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional
- 4 Departamento de Matematicas [Mexico]
- 5 Facultad de Ciencas [Mexico]
- 6 Departament de Matemàtica Aplicada II
- 7 Escuela Superior de Fisica y Matematicas [Mexico]
Combinatorics
[en]
Let P be a set of n points in general position in the plane. A subset I of P is called an island if there exists a convex set C such that I = P \C. In this paper we define the generalized island Johnson graph of P as the graph whose vertex consists of all islands of P of cardinality k, two of which are adjacent if their intersection consists of exactly l elements. We show that for large enough values of n, this graph is connected, and give upper and lower bounds on its diameter.
Volume: Vol. 15 no. 3
Section: Combinatorics
Published on: September 26, 2013
Imported on: February 15, 2012
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]