The Erdős-Sós conjecture for geometric graphsArticle
Authors: Luis Barba 1; Ruy Fabila-Monroy 2; Dolores Lara 3; Jesús Leaños 4; Cynthia Rodrıguez ; Gelasio Salazar 5,6; Francisco Zaragoza 7
NULL##NULL##NULL##NULL##NULL##NULL##NULL
Luis Barba;Ruy Fabila-Monroy;Dolores Lara;Jesús Leaños;Cynthia Rodrıguez;Gelasio Salazar;Francisco Zaragoza
- 1 Département d'Informatique
- 2 Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional
- 3 Departament de Matemàtica Aplicada II
- 4 Unidad Académica de Matemáticas [Mexico]
- 5 Department of Combinatorics and Optimization
- 6 Instituto de Fisica [Mexico]
- 7 Departamento de Sistemas [Azcapotzalco]
Combinatorics
[en]
Let f(n,k) be the minimum number of edges that must be removed from some complete geometric graph G on n points, so that there exists a tree on k vertices that is no longer a planar subgraph of G. In this paper we show that ( 1 / 2 )n2 / k-1-n / 2≤f(n,k) ≤2 n(n-2) / k-2. For the case when k=n, we show that 2 ≤f(n,n) ≤3. For the case when k=n and G is a geometric graph on a set of points in convex position, we completely solve the problem and prove that at least three edges must be removed.
Volume: Vol. 15 no. 1
Section: Combinatorics
Published on: February 28, 2013
Imported on: July 5, 2012
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]