Generalizing the connection between the classes of the sylvester congruence and the binary trees, we show that the classes of the congruence of the weak order on Sn defined as the transitive closure of the rewriting rule UacV1b1 ···VkbkW ≡k UcaV1b1 ···VkbkW, for letters a < b1,...,bk < c and words U,V1,...,Vk,W on [n], are in bijection with acyclic k-triangulations of the (n + 2k)-gon, or equivalently with acyclic pipe dreams for the permutation (1,...,k,n + k,...,k + 1,n + k + 1,...,n + 2k). It enables us to transport the known lattice and Hopf algebra structures from the congruence classes of ≡k to these acyclic pipe dreams, and to describe the product and coproduct of this algebra in terms of pipe dreams. Moreover, it shows that the fan obtained by coarsening the Coxeter fan according to the classes of ≡k is the normal fan of the corresponding brick polytope

Source : oai:HAL:hal-02166338v1

Volume: DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)

Published on: April 22, 2020

Submitted on: July 4, 2016

Keywords: Combinatorics,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]

This page has been seen 12 times.

This article's PDF has been downloaded 29 times.