Vol 19 no. 1

1. A characterization of trees with equal 2-domination and 2-independence numbers

Brause, Christoph ; Henning, Michael A. ; Krzywkowski, Marcin.
A set $S$ of vertices in a graph $G$ is a $2$-dominating set if every vertex of $G$ not in $S$ is adjacent to at least two vertices in $S$, and $S$ is a $2$-independent set if every vertex in $S$ is adjacent to at most one vertex of $S$. The $2$-domination number $\gamma_2(G)$ is the minimum cardinality of a $2$-dominating set in $G$, and the $2$-independence number $\alpha_2(G)$ is the maximum cardinality of a $2$-independent set in $G$. Chellali and Meddah [{\it Trees with equal $2$-domination and $2$-independence numbers,} Discussiones Mathematicae Graph Theory 32 (2012), 263--270] provided a constructive characterization of trees with equal $2$-domination and $2$-independence numbers. Their characterization is in terms of global properties of a tree, and involves properties of minimum $2$-dominating and maximum $2$-independent sets in the tree at each stage of the construction. We provide a constructive characterization that relies only on local properties of the tree at each […]
Section: Graph Theory

2. A New Game Invariant of Graphs: the Game Distinguishing Number

Gravier, Sylvain ; Meslem, Kahina ; Schmidt, Simon ; Slimani, Souad.
The distinguishing number of a graph $G$ is a symmetry related graph invariant whose study started two decades ago. The distinguishing number $D(G)$ is the least integer $d$ such that $G$ has a $d$-distinguishing coloring. A distinguishing $d$-coloring is a coloring $c:V(G)\rightarrow\{1,...,d\}$ invariant only under the trivial automorphism. In this paper, we introduce a game variant of the distinguishing number. The distinguishing game is a game with two players, the Gentle and the Rascal, with antagonist goals. This game is played on a graph $G$ with a set of $d\in\mathbb N^*$ colors. Alternately, the two players choose a vertex of $G$ and color it with one of the $d$ colors. The game ends when all the vertices have been colored. Then the Gentle wins if the coloring is distinguishing and the Rascal wins otherwise. This game leads to define two new invariants for a graph $G$, which are the minimum numbers of colors needed to ensure that the Gentle has a winning strategy, depending […]
Section: Graph Theory

3. Postorder Preimages

Defant, Colin.
Given a set $Y$ of decreasing plane trees and a permutation $\pi$, how many trees in $Y$ have $\pi$ as their postorder? Using combinatorial and geometric constructions, we provide a method for answering this question for certain sets $Y$ and all permutations $\pi$. We then provide applications of our results to the study of the deterministic stack-sorting algorithm.
Section: Combinatorics

4. The Existence of Planar Hypotraceable Oriented Graphs

van Aardt, Susan,  ; Burger, Alewyn Petrus ; Frick, Marietjie.
A digraph is \emph{traceable} if it has a path that visits every vertex. A digraph $D$ is \emph{hypotraceable} if $D$ is not traceable but $D-v$ is traceable for every vertex $v\in V(D)$. It is known that there exists a planar hypotraceable digraph of order $n$ for every $n\geq 7$, but no examples of planar hypotraceable oriented graphs (digraphs without 2-cycles) have yet appeared in the literature. We show that there exists a planar hypotraceable oriented graph of order $n$ for every even $n \geq 10$, with the possible exception of $n = 14$.
Section: Graph Theory

5. Wilf classification of triples of 4-letter patterns I

Callan, David ; Mansour, Toufik ; Shattuck, Mark.
This is the first of two papers in which we determine all 242 Wilf classes of triples of 4-letter patterns by showing that there are 32 non-singleton Wilf classes. There are 317 symmetry classes of triples of 4-letter patterns and after computer calculation of initial terms, the problem reduces to showing that counting sequences that appear to be the same (agree in the first 16 terms) are in fact identical. This amounts to counting avoiders for 107 representative triples. The insertion encoding algorithm (INSENC) applies to many of them and some others have been previously counted. Thus there remain 36 triples. In this paper, we find the generating function for the first 18 of these triples and in a second paper, we treat the other 18. The generating function turns out to be algebraic in each case. Our methods are both combinatorial and analytic, including decompositions by left-right maxima and by initial letters. Sometimes this leads to an algebraic equation for the generating […]
Section: Combinatorics

6. Wilf classification of triples of 4-letter patterns II

Callan, David ; Mansour, Toufik ; Shattuck, Mark.
This is the second of two papers in which we determine all 242 Wilf classes of triples of 4-letter patterns by showing that there are 32 non-singleton Wilf classes. There are 317 symmetry classes of triples of 4-letter patterns and after computer calculation of initial terms, the problem reduces to showing that counting sequences that appear to be the same (agree in the first 16 terms) are in fact identical. This amounts to counting avoiders for 107 representative triples. The insertion encoding algorithm (INSENC) applies to many of them and some others have been previously counted. There remain 36 triples and the first paper dealt with the first 18. In this paper, we find the generating function for the last 18 triples which turns out to be algebraic in each case. Our methods are both combinatorial and analytic, including decomposi-tions by left-right maxima and by initial letters. Sometimes this leads to an algebraic equation for the generating function, sometimes to a functional […]
Section: Combinatorics

7. On the shelling antimatroids of split graphs

Cardinal, Jean ; Doignon, Jean-Paul ; Merckx, Keno.
Chordal graph shelling antimatroids have received little attention with regard to their combinatorial properties and related optimization problems, as compared to the case of poset shelling antimatroids. Here we consider a special case of these antimatroids, namely the split graph shelling antimatroids. We show that the feasible sets of such an antimatroid relate to some poset shelling antimatroids constructed from the graph. We discuss a few applications, obtaining in particular a simple polynomial-time algorithm to find a maximum weight feasible set. We also provide a simple description of the circuits and the free sets.
Section: Combinatorics

8. A class of symmetric difference-closed sets related to commuting involutions

Campbell, John.
Recent research on the combinatorics of finite sets has explored the structure of symmetric difference-closed sets, and recent research in combinatorial group theory has concerned the enumeration of commuting involutions in $S_{n}$ and $A_{n}$. In this article, we consider an interesting combination of these two subjects, by introducing classes of symmetric difference-closed sets of elements which correspond in a natural way to commuting involutions in $S_{n}$ and $A_{n}$. We consider the natural combinatorial problem of enumerating symmetric difference-closed sets consisting of subsets of sets consisting of pairwise disjoint $2$-subsets of $[n]$, and the problem of enumerating symmetric difference-closed sets consisting of elements which correspond to commuting involutions in $A_{n}$. We prove explicit combinatorial formulas for symmetric difference-closed sets of these forms, and we prove a number of conjectured properties related to such sets which had previously been discovered […]
Section: Combinatorics

9. S-Restricted Compositions Revisited

Zolfaghari, Behrouz ; Fallah, Mehran S. ; Sedighi, Mehdi.
An S-restricted composition of a positive integer n is an ordered partition of n where each summand is drawn from a given subset S of positive integers. There are various problems regarding such compositions which have received attention in recent years. This paper is an attempt at finding a closed- form formula for the number of S-restricted compositions of n. To do so, we reduce the problem to finding solutions to corresponding so-called interpreters which are linear homogeneous recurrence relations with constant coefficients. Then, we reduce interpreters to Diophantine equations. Such equations are not in general solvable. Thus, we restrict our attention to those S-restricted composition problems whose interpreters have a small number of coefficients, thereby leading to solvable Diophantine equations. The formalism developed is then used to study the integer sequences related to some well-known cases of the S-restricted composition problem.
Section: Combinatorics

10. Pairwise Stability in Two Sided Market with Strictly Increasing Valuation Functions

Ali, Yasir ; Javaid, Asma.
This paper deals with two-sided matching market with two disjoint sets, i.e. the set of buyers and the set of sellers. Each seller can trade with at most with one buyer and vice versa. Money is transferred from sellers to buyers for an indivisible goods that buyers own. Valuation functions, for participants of both sides, are represented by strictly increasing functions with money considered as discrete variable. An algorithm is devised to prove the existence of stability for this model.
Section: Discrete Algorithms

11. Decidability of multiset, set and numerically decipherable directed figure codes

Moczurad, Włodzimierz.
Codes with various kinds of decipherability, weaker than the usual unique decipherability, have been studied since multiset decipherability was introduced in mid-1980s. We consider decipherability of directed figure codes, where directed figures are defined as labelled polyominoes with designated start and end points, equipped with catenation operation that may use a merging function to resolve possible conflicts. This is one of possible extensions generalizing words and variable-length codes to planar structures. Here, verification whether a given set is a code is no longer decidable in general. We study the decidability status of figure codes depending on catenation type (with or without a merging function), decipherability kind (unique, multiset, set or numeric) and code geometry (several classes determined by relative positions of start and end points of figures). We give decidability or undecidability proofs in all but two cases that remain open.
Section: Automata, Logic and Semantics

12. The quotients between the (revised) Szeged index and Wiener index of graphs

Zhang, Huihui ; Chen, Jing ; Li, Shuchao.
Let $Sz(G),Sz^*(G)$ and $W(G)$ be the Szeged index, revised Szeged index and Wiener index of a graph $G.$ In this paper, the graphs with the fourth, fifth, sixth and seventh largest Wiener indices among all unicyclic graphs of order $n\geqslant 10$ are characterized; as well the graphs with the first, second, third, and fourth largest Wiener indices among all bicyclic graphs are identified. Based on these results, further relation on the quotients between the (revised) Szeged index and the Wiener index are studied. Sharp lower bound on $Sz(G)/W(G)$ is determined for all connected graphs each of which contains at least one non-complete block. As well the connected graph with the second smallest value on $Sz^*(G)/W(G)$ is identified for $G$ containing at least one cycle.
Section: Graph Theory

13. Graphs of Edge-Intersecting and Non-Splitting One Bend Paths in a Grid

Boyacı, Arman ; Ekim, Tınaz ; Shalom, Mordechai ; Zaks, Shmuel.
The families EPT (resp. EPG) Edge Intersection Graphs of Paths in a tree (resp. in a grid) are well studied graph classes. Recently we introduced the graph classes Edge-Intersecting and Non-Splitting Paths in a Tree ENPT, and in a Grid (ENPG). It was shown that ENPG contains an infinite hierarchy of subclasses that are obtained by restricting the number of bends in the paths. Motivated by this result, in this work we focus on one bend {ENPG} graphs. We show that one bend ENPG graphs are properly included in two bend ENPG graphs. We also show that trees and cycles are one bend ENPG graphs, and characterize the split graphs and co-bipartite graphs that are one bend ENPG. We prove that the recognition problem of one bend ENPG split graphs is NP-complete even in a very restricted subfamily of split graphs. Last we provide a linear time recognition algorithm for one bend ENPG co-bipartite graphs.
Section: Graph Theory

14. Improved kernels for Signed Max Cut parameterized above lower bound on (r,l)-graphs

Faria, Luerbio ; Klein, Sulamita ; Sau, Ignasi ; Sucupira, Rubens.
A graph $G$ is signed if each edge is assigned $+$ or $-$. A signed graph is balanced if there is a bipartition of its vertex set such that an edge has sign $-$ if and only if its endpoints are in different parts. The Edwards-Erd\"os bound states that every graph with $n$ vertices and $m$ edges has a balanced subgraph with at least $\frac{m}{2}+\frac{n-1}{4}$ edges. In the Signed Max Cut Above Tight Lower Bound (Signed Max Cut ATLB) problem, given a signed graph $G$ and a parameter $k$, the question is whether $G$ has a balanced subgraph with at least $\frac{m}{2}+\frac{n-1}{4}+\frac{k}{4}$ edges. This problem generalizes Max Cut Above Tight Lower Bound, for which a kernel with $O(k^5)$ vertices was given by Crowston et al. [ICALP 2012, Algorithmica 2015]. Crowston et al. [TCS 2013] improved this result by providing a kernel with $O(k^3)$ vertices for the more general Signed Max Cut ATLB problem. In this article we are interested in improving the size of the kernels for Signed Max […]
Section: Discrete Algorithms

15. Rises in forests of binary shrubs

Remmel, Jeffrey ; Zheng, Sai-nan.
The study of patterns in permutations associated with forests of binary shrubs was initiated by D. Bevan et al.. In this paper, we study five different types of rise statistics that can be associated with such permutations and find the generating functions for the distribution of such rise statistics.
Section: Combinatorics

16. On universal partial words

Chen, Herman Z. Q. ; Kitaev, Sergey ; Mütze, Torsten ; Sun, Brian Y..
A universal word for a finite alphabet $A$ and some integer $n\geq 1$ is a word over $A$ such that every word in $A^n$ appears exactly once as a subword (cyclically or linearly). It is well-known and easy to prove that universal words exist for any $A$ and $n$. In this work we initiate the systematic study of universal partial words. These are words that in addition to the letters from $A$ may contain an arbitrary number of occurrences of a special `joker' symbol $\Diamond\notin A$, which can be substituted by any symbol from $A$. For example, $u=0\Diamond 011100$ is a linear partial word for the binary alphabet $A=\{0,1\}$ and for $n=3$ (e.g., the first three letters of $u$ yield the subwords $000$ and $010$). We present results on the existence and non-existence of linear and cyclic universal partial words in different situations (depending on the number of $\Diamond$s and their positions), including various explicit constructions. We also provide numerous examples of universal […]
Section: Combinatorics

17. Composing short 3-compressing words on a 2-letter alphabet

Cherubini, Alessandra ; Frigeri, Achille ; Liu, Zuhua.
A finite deterministic (semi)automaton A = (Q, Σ, δ) is k-compressible if there is some word w ∈ Σ + such that theimage of its state set Q under the natural action of w is reduced by at least k states. Such word w, if it exists, is calleda k-compressing word for A and A is said to be k-compressed by w. A word is k-collapsing if it is k-compressing foreach k-compressible automaton, and it is k-synchronizing if it is k-compressing for all k-compressible automata withk+1 states. We compute a set W of short words such that each 3-compressible automaton on a two-letter alphabetis 3-compressed at least by a word in W. Then we construct a shortest common superstring of the words in W and,with a further refinement, we obtain a 3-collapsing word of length 53. Moreover, as previously announced, we showthat the shortest 3-synchronizing word is not 3-collapsing, illustrating the new bounds 34 ≤ c(2, 3) ≤ 53 for the length c(2, 3) of the shortest 3-collapsing word on a two-letter alphabet.
Section: Automata, Logic and Semantics

18. Nonrepetitive edge-colorings of trees

Kündgen, A. ; Talbot, T..
A repetition is a sequence of symbols in which the first half is the same as the second half. An edge-coloring of a graph is repetition-free or nonrepetitive if there is no path with a color pattern that is a repetition. The minimum number of colors so that a graph has a nonrepetitive edge-coloring is called its Thue edge-chromatic number. We improve on the best known general upper bound of $4\Delta-4$ for the Thue edge-chromatic number of trees of maximum degree $\Delta$ due to Alon, Grytczuk, Ha{\l}uszczak and Riordan (2002) by providing a simple nonrepetitive edge-coloring with $3\Delta-2$ colors.
Section: Graph Theory

19. Evaluations of series of the $q$-Watson, $q$-Dixon, and $q$-Whipple type

Wei, Chuanan ; Wang, Xiaoxia.
Using $q$-series identities and series rearrangement, we establish several extensions of $q$-Watson formulas with two extra integer parameters. Then they and Sears' transformation formula are utilized to derive some generalizations of $q$-Dixon formulas and $q$-Whipple formulas with two extra integer parameters. As special cases of these results, many interesting evaluations of series of $q$-Watson,$q$-Dixon, and $q$-Whipple type are displayed.
Section: Combinatorics

20. Equivalence of the filament and overlap graphs of subtrees of limited trees

Enright, Jessica ; Stewart, Lorna.
The overlap graphs of subtrees of a tree are equivalent to subtree filament graphs, the overlap graphs of subtrees of a star are cocomparability graphs, and the overlap graphs of subtrees of a caterpillar are interval filament graphs. In this paper, we show the equivalence of many more classes of subtree overlap and subtree filament graphs, and equate them to classes of complements of cochordal-mixed graphs. Our results generalize the previously known results mentioned above.
Section: Graph Theory

21. On a combination of the 1-2-3 Conjecture and the Antimagic Labelling Conjecture

Bensmail, Julien ; Senhaji, Mohammed ; Szabo Lyngsie, Kasper.
This paper is dedicated to studying the following question: Is it always possible to injectively assign the weights 1, ..., |E(G)| to the edges of any given graph G (with no component isomorphic to K2) so that every two adjacent vertices of G get distinguished by their sums of incident weights? One may see this question as a combination of the well-known 1-2-3 Conjecture and the Antimagic Labelling Conjecture. Throughout this paper, we exhibit evidence that this question might be true. Benefiting from the investigations on the Antimagic Labelling Conjecture, we first point out that several classes of graphs, such as regular graphs, indeed admit such assignments. We then show that trees also do, answering a recent conjecture of Arumugam, Premalatha, Bača and Semaničová-Feňovčíková. Towards a general answer to the question above, we then prove that claimed assignments can be constructed for any graph, provided we are allowed to use some number of additional edge weights. For some classes […]
Section: Graph Theory

22. Asymptotics of the occupancy scheme in a random environment and its applications to tries

Businger, Silvia.
Consider $ m $ copies of an irreducible, aperiodic Markov chain $ Y $ taking values in a finite state space. The asymptotics as $ m $ tends to infinity, of the first time from which on the trajectories of the $ m $ copies differ, have been studied by Szpankowski (1991) in the setting of tries. We use a different approach and model the $ m $ trajectories by a variant of the occupancy scheme, where we consider a nested sequence of boxes. This approach will enable us to extend the result to the case when the transition probabilities are random. We moreover use the same techniques to study the asymptotics as $ m $ tends to infinity of the time up to which we have observed all the possible trajectories of $ Y $ in random and nonrandom scenery.
Section: Analysis of Algorithms

23. Lattice paths with catastrophes

Banderier, Cyril ; Wallner, Michael.
In queuing theory, it is usual to have some models with a "reset" of the queue. In terms of lattice paths, it is like having the possibility of jumping from any altitude to zero. These objects have the interesting feature that they do not have the same intuitive probabilistic behaviour as classical Dyck paths (the typical properties of which are strongly related to Brownian motion theory), and this article quantifies some relations between these two types of paths. We give a bijection with some other lattice paths and a link with a continued fraction expansion. Furthermore, we prove several formulae for related combinatorial structures conjectured in the On-Line Encyclopedia of Integer Sequences. Thanks to the kernel method and via analytic combinatorics, we provide the enumeration and limit laws of these "lattice paths with catastrophes" for any finite set of jumps. We end with an algorithm to generate such lattice paths uniformly at random.
Section: Analysis of Algorithms

24. Characterizations of minimal dominating sets and the well-dominated property in lexicographic product graphs

Gözüpek, Didem ; Hujdurović, Ademir ; Milanič, Martin.
A graph is said to be well-dominated if all its minimal dominating sets are of the same size. The class of well-dominated graphs forms a subclass of the well studied class of well-covered graphs. While the recognition problem for the class of well-covered graphs is known to be co-NP-complete, the recognition complexity of well-dominated graphs is open. In this paper we introduce the notion of an irreducible dominating set, a variant of dominating set generalizing both minimal dominating sets and minimal total dominating sets. Based on this notion, we characterize the family of minimal dominating sets in a lexicographic product of two graphs and derive a characterization of the well-dominated lexicographic product graphs. As a side result motivated by this study, we give a polynomially testable characterization of well-dominated graphs with domination number two, and show, more generally, that well-dominated graphs can be recognized in polynomial time in any class of graphs with […]
Section: Graph Theory

25. On rank-width of even-hole-free graphs

Adler, Isolde ; Le, Ngoc Khang ; Müller, Haiko ; Radovanović, Marko ; Trotignon, Nicolas ; Vušković, Kristina.
We present a class of (diamond, even hole)-free graphs with no clique cutset that has unbounded rank-width. In general, even-hole-free graphs have unbounded rank-width, because chordal graphs are even-hole-free. A.A. da Silva, A. Silva and C. Linhares-Sales (2010) showed that planar even-hole-free graphs have bounded rank-width, and N.K. Le (2016) showed that even-hole-free graphs with no star cutset have bounded rank-width. A natural question is to ask, whether even-hole-free graphs with no clique cutsets have bounded rank-width. Our result gives a negative answer. Hence we cannot apply Courcelle and Makowsky's meta-theorem which would provide efficient algorithms for a large number of problems, including the maximum independent set problem, whose complexity remains open for (diamond, even hole)-free graphs.
Section: Graph Theory