Vol 19 no. 2, Permutation Patterns 2016


1. Splittability and 1-amalgamability of permutation classes

Jelínek, Vít ; Opler, Michal.
A permutation class $C$ is splittable if it is contained in a merge of two of its proper subclasses, and it is 1-amalgamable if given two permutations $\sigma$ and $\tau$ in $C$, each with a marked element, we can find a permutation $\pi$ in $C$ containing both $\sigma$ and $\tau$ such that the two marked elements coincide. It was previously shown that unsplittability implies 1-amalgamability. We prove that unsplittability and 1-amalgamability are not equivalent properties of permutation classes by showing that the class $Av(1423, 1342)$ is both splittable and 1-amalgamable. Our construction is based on the concept of LR-inflations, which we introduce here and which may be of independent interest.
Section: Permutation Patterns

2. Asymptotic distribution of fixed points of pattern-avoiding involutions

Miner, Samuel ; Rizzolo, Douglas ; Slivken, Erik.
For a variety of pattern-avoiding classes, we describe the limiting distribution for the number of fixed points for involutions chosen uniformly at random from that class. In particular we consider monotone patterns of arbitrary length as well as all patterns of length 3. For monotone patterns we utilize the connection with standard Young tableaux with at most $k$ rows and involutions avoiding a monotone pattern of length $k$. For every pattern of length 3 we give the bivariate generating function with respect to fixed points for the involutions that avoid that pattern, and where applicable apply tools from analytic combinatorics to extract information about the limiting distribution from the generating function. Many well-known distributions appear.
Section: Permutation Patterns