Vol. 21 no. 3


1. Binding Number, Toughness and General Matching Extendability in Graphs

Lu, Hongliang ; Yu, Qinglin.
A connected graph $G$ with at least $2m + 2n + 2$ vertices which contains a perfect matching is $E(m, n)$-{\it extendable}, if for any two sets of disjoint independent edges $M$ and $N$ with $|M| = m$ and $|N|= n$, there is a perfect matching $F$ in $G$ such that $M\subseteq F$ and $N\cap F=\emptyset$. Similarly, a connected graph with at least $n+2k+2$ vertices is called $(n,k)$-{\it extendable} if for any vertex set $S$ of size $n$ and any matching $M$ of size $k$ of $G-S$, $G-S-V(M)$ contains a perfect matching. Let $\varepsilon$ be a small positive constant, $b(G)$ and $t(G)$ be the binding number and toughness of a graph $G$. The two main theorems of this paper are: for every graph $G$ with sufficiently large order, 1) if $b(G)\geq 4/3+\varepsilon$, then $G$ is $E(m,n)$-extendable and also $(n,k)$-extendable; 2) if $t(G)\geq 1+\varepsilon$ and $G$ has a high connectivity, then $G$ is $E(m,n)$-extendable and also $(n,k)$-extendable. It is worth to point out that the binding number […]
Section: Graph Theory

2. Solving Two Conjectures regarding Codes for Location in Circulant Graphs

Junnila, Ville ; Laihonen, Tero ; Paris, Gabrielle.
Identifying and locating-dominating codes have been widely studied in circulant graphs of type $C_n(1,2, \ldots, r)$, which can also be viewed as power graphs of cycles. Recently, Ghebleh and Niepel (2013) considered identification and location-domination in the circulant graphs $C_n(1,3)$. They showed that the smallest cardinality of a locating-dominating code in $C_n(1,3)$ is at least $\lceil n/3 \rceil$ and at most $\lceil n/3 \rceil + 1$ for all $n \geq 9$. Moreover, they proved that the lower bound is strict when $n \equiv 0, 1, 4 \pmod{6}$ and conjectured that the lower bound can be increased by one for other $n$. In this paper, we prove their conjecture. Similarly, they showed that the smallest cardinality of an identifying code in $C_n(1,3)$ is at least $\lceil 4n/11 \rceil$ and at most $\lceil 4n/11 \rceil + 1$ for all $n \geq 11$. Furthermore, they proved that the lower bound is attained for most of the lengths $n$ and conjectured that in the rest of the cases the lower bound […]
Section: Graph Theory

3. On the maximum number of minimum total dominating sets in forests

Henning, Michael A. ; Mohr, Elena ; Rautenbach, Dieter.
We propose the conjecture that every tree with order $n$ at least $2$ and total domination number $\gamma_t$ has at most $\left(\frac{n-\frac{\gamma_t}{2}}{\frac{\gamma_t}{2}}\right)^{\frac{\gamma_t}{2}}$ minimum total dominating sets. As a relaxation of this conjecture, we show that every forest $F$ with order $n$, no isolated vertex, and total domination number $\gamma_t$ has at most $\min\left\{\left(8\sqrt{e}\, \right)^{\gamma_t}\left(\frac{n-\frac{\gamma_t}{2}}{\frac{\gamma_t}{2}}\right)^{\frac{\gamma_t}{2}}, (1+\sqrt{2})^{n-\gamma_t},1.4865^n\right\}$ minimum total dominating sets.
Section: Graph Theory

4. Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words

Löding, Christof ; Spinrath, Christopher.
We consider decision problems for relations over finite and infinite words defined by finite automata. We prove that the equivalence problem for binary deterministic rational relations over infinite words is undecidable in contrast to the case of finite words, where the problem is decidable. Furthermore, we show that it is decidable in doubly exponential time for an automatic relation over infinite words whether it is a recognizable relation. We also revisit this problem in the context of finite words and improve the complexity of the decision procedure to single exponential time. The procedure is based on a polynomial time regularity test for deterministic visibly pushdown automata, which is a result of independent interest.
Section: Automata, Logic and Semantics

5. On the insertion of n-powers

Almeida, J. ; Klíma, O..
In algebraic terms, the insertion of $n$-powers in words may be modelled at the language level by considering the pseudovariety of ordered monoids defined by the inequality $1\le x^n$. We compare this pseudovariety with several other natural pseudovarieties of ordered monoids and of monoids associated with the Burnside pseudovariety of groups defined by the identity $x^n=1$. In particular, we are interested in determining the pseudovariety of monoids that it generates, which can be viewed as the problem of determining the Boolean closure of the class of regular languages closed under $n$-power insertions. We exhibit a simple upper bound and show that it satisfies all pseudoidentities which are provable from $1\le x^n$ in which both sides are regular elements with respect to the upper bound.
Section: Automata, Logic and Semantics

6. $K_{1,3}$-covering red and blue points in the plane

Ábrego, Bernardo M. ; Fernández-Merchant, Silvia ; Kano, Mikio ; Orden, David ; Pérez-Lantero, Pablo ; Seara, Carlos ; Tejel, Javier.
We say that a finite set of red and blue points in the plane in general position can be $K_{1,3}$-covered if the set can be partitioned into subsets of size $4$, with $3$ points of one color and $1$ point of the other color, in such a way that, if at each subset the fourth point is connected by straight-line segments to the same-colored points, then the resulting set of all segments has no crossings. We consider the following problem: Given a set $R$ of $r$ red points and a set $B$ of $b$ blue points in the plane in general position, how many points of $R\cup B$ can be $K_{1,3}$-covered? and we prove the following results: (1) If $r=3g+h$ and $b=3h+g$, for some non-negative integers $g$ and $h$, then there are point sets $R\cup B$, like $\{1,3\}$-equitable sets (i.e., $r=3b$ or $b=3r$) and linearly separable sets, that can be $K_{1,3}$-covered. (2) If $r=3g+h$, $b=3h+g$ and the points in $R\cup B$ are in convex position, then at least $r+b-4$ points can be $K_{1,3}$-covered, and […]
Section: Combinatorics

7. Packing coloring of generalized Sierpinski graphs

Korze, Danilo ; Vesel, Aleksander.
The packing chromatic number $\chi_{\rho}(G)$ of a graph $G$ is the smallest integer $c$ such that the vertex set $V(G)$ can be partitioned into sets $X_1, . . . , X_c$, with the condition that vertices in $X_i$ have pairwise distance greater than $i$. In this paper, we consider the packing chromatic number of several families of Sierpinski-type graphs. We establish the packing chromatic numbers of generalized Sierpinski graphs $S^n_G$ where $G$ is a path or a cycle (with exception of a cycle of length five) as well as a connected graph of order four. Furthermore, we prove that the packing chromatic number in the family of Sierpinski-triangle graphs $ST_4^n$ is bounded from above by 20.
Section: Graph Theory

8. Packing chromatic vertex-critical graphs

Klavžar, Sandi ; Rall, Douglas F..
The packing chromatic number $\chi_{\rho}(G)$ of a graph $G$ is the smallest integer $k$ such that the vertex set of $G$ can be partitioned into sets $V_i$, $i\in [k]$, where vertices in $V_i$ are pairwise at distance at least $i+1$. Packing chromatic vertex-critical graphs, $\chi_{\rho}$-critical for short, are introduced as the graphs $G$ for which $\chi_{\rho}(G-x) < \chi_{\rho}(G)$ holds for every vertex $x$ of $G$. If $\chi_{\rho}(G) = k$, then $G$ is $k$-$\chi_{\rho}$-critical. It is shown that if $G$ is $\chi_{\rho}$-critical, then the set $\{\chi_{\rho}(G) - \chi_{\rho}(G-x):\ x\in V(G)\}$ can be almost arbitrary. The $3$-$\chi_{\rho}$-critical graphs are characterized, and $4$-$\chi_{\rho}$-critical graphs are characterized in the case when they contain a cycle of length at least $5$ which is not congruent to $0$ modulo $4$. It is shown that for every integer $k\ge 2$ there exists a $k$-$\chi_{\rho}$-critical tree and that a $k$-$\chi_{\rho}$-critical caterpillar exists if […]
Section: Graph Theory

9. Bounds for the smallest $k$-chromatic graphs of given girth

Exoo, Geoffrey ; Goedgebeur, Jan.
Let $n_g(k)$ denote the smallest order of a $k$-chromatic graph of girth at least $g$. We consider the problem of determining $n_g(k)$ for small values of $k$ and $g$. After giving an overview of what is known about $n_g(k)$, we provide some new lower bounds based on exhaustive searches, and then obtain several new upper bounds using computer algorithms for the construction of witnesses, and for the verification of their correctness. We also present the first examples of reasonably small order for $k = 4$ and $g > 5$. In particular, the new bounds include: $n_4(7) \leq 77$, $26 \leq n_6(4) \leq 66$, $30 \leq n_7(4) \leq 171$.
Section: Graph Theory

10. Slimness of graphs

Dragan, Feodor F. ; Mohammed, Abdulhakeem.
Slimness of a graph measures the local deviation of its metric from a tree metric. In a graph $G=(V,E)$, a geodesic triangle $\bigtriangleup(x,y,z)$ with $x, y, z\in V$ is the union $P(x,y) \cup P(x,z) \cup P(y,z)$ of three shortest paths connecting these vertices. A geodesic triangle $\bigtriangleup(x,y,z)$ is called $\delta$-slim if for any vertex $u\in V$ on any side $P(x,y)$ the distance from $u$ to $P(x,z) \cup P(y,z)$ is at most $\delta$, i.e. each path is contained in the union of the $\delta$-neighborhoods of two others. A graph $G$ is called $\delta$-slim, if all geodesic triangles in $G$ are $\delta$-slim. The smallest value $\delta$ for which $G$ is $\delta$-slim is called the slimness of $G$. In this paper, using the layering partition technique, we obtain sharp bounds on slimness of such families of graphs as (1) graphs with cluster-diameter $\Delta(G)$ of a layering partition of $G$, (2) graphs with tree-length $\lambda$, (3) graphs with tree-breadth $\rho$, […]
Section: Graph Theory

11. Some results on the palette index of graphs

Casselgren, C. J. ; Petrosyan, Petros A..
Given a proper edge coloring $\varphi$ of a graph $G$, we define the palette $S_{G}(v,\varphi)$ of a vertex $v \in V(G)$ as the set of all colors appearing on edges incident with $v$. The palette index $\check s(G)$ of $G$ is the minimum number of distinct palettes occurring in a proper edge coloring of $G$. In this paper we give various upper and lower bounds on the palette index of $G$ in terms of the vertex degrees of $G$, particularly for the case when $G$ is a bipartite graph with small vertex degrees. Some of our results concern $(a,b)$-biregular graphs; that is, bipartite graphs where all vertices in one part have degree $a$ and all vertices in the other part have degree $b$. We conjecture that if $G$ is $(a,b)$-biregular, then $\check{s}(G)\leq 1+\max\{a,b\}$, and we prove that this conjecture holds for several families of $(a,b)$-biregular graphs. Additionally, we characterize the graphs whose palette index equals the number of vertices.
Section: Graph Theory

12. Exact values for three domination-like problems in circular and infinite grid graphs of small height

Bouznif, Marwane ; Darlay, Julien ; Moncel, Julien ; Preissmann, Myriam.
In this paper we study three domination-like problems, namely identifying codes, locating-dominating codes, and locating-total-dominating codes. We are interested in finding the minimum cardinality of such codes in circular and infinite grid graphs of given height. We provide an alternate proof for already known results, as well as new results. These were obtained by a computer search based on a generic framework, that we developed earlier, for the search of a minimum labeling satisfying a pseudo-d-local property in rotagraphs.
Section: Graph Theory

13. The Adaptive sampling revisited

Drescher, Matthew ; Louchard, Guy ; Swan, Yvik.
The problem of estimating the number n of distinct keys of a large collection of N data is well known in computer science. A classical algorithm is the adaptive sampling (AS). n can be estimated by R2 J , where R is the final bucket size and J is the final depth at the end of the process. Several new interesting questions can be asked about AS (some of them were suggested by P.Flajolet and popularized by J.Lumbroso). The distribution of W = log(R2 J /n) is known, we rederive this distribution in a simpler way. We provide new results on the moments of J and W. We also analyze the final cache size R distribution. We consider colored keys: assume also that among the n distinct keys, m do have color K We show how to estimate p = m n. We study keys with some multiplicity : we provide a way to estimate the total number M of some color K keys among the total number N of keys. We consider the case where we know a priori the multiplicities but not the colors. There we want to estimate the total […]
Section: Analysis of Algorithms

14. On-line algorithms for multiplication and division in real and complex numeration systems

Frougny, Christiane ; Pavelka, Marta ; Pelantova, Edita ; Svobodova, Milena.
A positional numeration system is given by a base and by a set of digits. The base is a real or complex number $\beta$ such that $|\beta|>1$, and the digit set $A$ is a finite set of digits including $0$. Thus a number can be seen as a finite or infinite string of digits. An on-line algorithm processes the input piece-by-piece in a serial fashion. On-line arithmetic, introduced by Trivedi and Ercegovac, is a mode of computation where operands and results flow through arithmetic units in a digit serial manner, starting with the most significant digit. In this paper, we first formulate a generalized version of the on-line algorithms for multiplication and division of Trivedi and Ercegovac for the cases that $\beta$ is any real or complex number, and digits are real or complex. We then define the so-called OL Property, and show that if $(\beta, A)$ has the OL Property, then on-line multiplication and division are feasible by the Trivedi-Ercegovac algorithms. For a real base $\beta$ […]
Section: Discrete Algorithms

15. Non-crossing paths with geographic constraints

Silveira, Rodrigo I. ; Speckmann, Bettina ; Verbeek, Kevin.
A geographic network is a graph whose vertices are restricted to lie in a prescribed region in the plane. In this paper we begin to study the following fundamental problem for geographic networks: can a given geographic network be drawn without crossings? We focus on the seemingly simple setting where each region is a vertical segment, and one wants to connect pairs of segments with a path that lies inside the convex hull of the two segments. We prove that when paths must be drawn as straight line segments, it is NP-complete to determine if a crossing-free solution exists, even if all vertical segments have unit length. In contrast, we show that when paths must be monotone curves, the question can be answered in polynomial time. In the more general case of paths that can have any shape, we show that the problem is polynomial under certain assumptions.
Section: Discrete Algorithms

16. Number of orbits of Discrete Interval Exchanges

Lapointe, Mélodie.
A new recursive function on discrete interval exchange transformation associated to a composition of length $r$, and the permutation $\sigma(i) = r -i +1$ is defined. Acting on composition $c$, this recursive function counts the number of orbits of the discrete interval exchange transformation associated to the composition $c$. Moreover, minimal discrete interval exchanges transformation i.e. the ones having only one orbit, are reduced to the composition which label the root of the Raney tree. Therefore, we describe a generalization of the Raney tree using our recursive function.
Section: Combinatorics

17. Planar 3-SAT with a Clause/Variable Cycle

Pilz, Alexander.
In the Planar 3-SAT problem, we are given a 3-SAT formula together with its incidence graph, which is planar, and are asked whether this formula is satisfiable. Since Lichtenstein's proof that this problem is NP-complete, it has been used as a starting point for a large number of reductions. In the course of this research, different restrictions on the incidence graph of the formula have been devised, for which the problem also remains hard. In this paper, we investigate the restriction in which we require that the incidence graph can be augmented by the edges of a Hamiltonian cycle that first passes through all variables and then through all clauses, in a way that the resulting graph is still planar. We show that the problem of deciding satisfiability of a 3-SAT formula remains NP-complete even if the incidence graph is restricted in that way and the Hamiltonian cycle is given. This complements previous results demanding cycles only through either the variables or clauses. The […]
Section: Discrete Algorithms

18. The agreement distance of rooted phylogenetic networks

Klawitter, Jonathan.
The minimal number of rooted subtree prune and regraft (rSPR) operations needed to transform one phylogenetic tree into another one induces a metric on phylogenetic trees - the rSPR-distance. The rSPR-distance between two phylogenetic trees $T$ and $T'$ can be characterised by a maximum agreement forest; a forest with a minimum number of components that covers both $T$ and $T'$. The rSPR operation has recently been generalised to phylogenetic networks with, among others, the subnetwork prune and regraft (SNPR) operation. Here, we introduce maximum agreement graphs as an explicit representations of differences of two phylogenetic networks, thus generalising maximum agreement forests. We show that maximum agreement graphs induce a metric on phylogenetic networks - the agreement distance. While this metric does not characterise the distances induced by SNPR and other generalisations of rSPR, we prove that it still bounds these distances with constant factors.
Section: Graph Theory

19. Consecutive patterns in restricted permutations and involutions

Barnabei, M. ; Bonetti, F. ; Castronuovo, N. ; Silimbani, M..
It is well-known that the set $\mathbf I_n$ of involutions of the symmetric group $\mathbf S_n$ corresponds bijectively - by the Foata map $F$ - to the set of $n$-permutations that avoid the two vincular patterns $\underline{123},$ $\underline{132}.$ We consider a bijection $\Gamma$ from the set $\mathbf S_n$ to the set of histoires de Laguerre, namely, bicolored Motzkin paths with labelled steps, and study its properties when restricted to $\mathbf S_n(1\underline{23},1\underline{32}).$ In particular, we show that the set $\mathbf S_n(\underline{123},{132})$ of permutations that avoids the consecutive pattern $\underline{123}$ and the classical pattern $132$ corresponds via $\Gamma$ to the set of Motzkin paths, while its image under $F$ is the set of restricted involutions $\mathbf I_n(3412).$ We exploit these results to determine the joint distribution of the statistics des and inv over $\mathbf S_n(\underline{123},{132})$ and over $\mathbf I_n(3412).$ Moreover, we determine the […]
Section: Combinatorics

20. Search-and-Fetch with 2 Robots on a Disk: Wireless and Face-to-Face Communication Models

Georgiou, Konstantinos ; Karakostas, George ; Kranakis, Evangelos.
We initiate the study of a new problem on searching and fetching in a distributed environment concerning treasure-evacuation from a unit disk. A treasure and an exit are located at unknown positions on the perimeter of a disk and at known arc distance. A team of two robots start from the center of the disk, and their goal is to fetch the treasure to the exit. At any time the robots can move anywhere they choose on the disk, independently of each other, with the same speed. A robot detects an interesting point (treasure or exit) only if it passes over the exact location of that point. We are interested in designing distributed algorithms that minimize the worst-case treasure-evacuation time, i.e. the time it takes for the treasure to be discovered and brought (fetched) to the exit by any of the robots. The communication protocol between the robots is either wireless, where information is shared at any time, or face-to-face (i.e. non-wireless), where information can be shared only if […]
Section: Distributed Computing and Networking

21. Efficient enumeration of solutions produced by closure operations

Mary, Arnaud ; Strozecki, Yann.
In this paper we address the problem of generating all elements obtained by the saturation of an initial set by some operations. More precisely, we prove that we can generate the closure of a boolean relation (a set of boolean vectors) by polymorphisms with a polynomial delay. Therefore we can compute with polynomial delay the closure of a family of sets by any set of "set operations": union, intersection, symmetric difference, subsets, supersets $\dots$). To do so, we study the $Membership_{\mathcal{F}}$ problem: for a set of operations $\mathcal{F}$, decide whether an element belongs to the closure by $\mathcal{F}$ of a family of elements. In the boolean case, we prove that $Membership_{\mathcal{F}}$ is in P for any set of boolean operations $\mathcal{F}$. When the input vectors are over a domain larger than two elements, we prove that the generic enumeration method fails, since $Membership_{\mathcal{F}}$ is NP-hard for some $\mathcal{F}$. We also study the problem of […]
Section: Discrete Algorithms

22. On the multipacking number of grid graphs

Beaudou, Laurent ; Brewster, Richard C..
In 2001, Erwin introduced broadcast domination in graphs. It is a variant of classical domination where selected vertices may have different domination powers. The minimum cost of a dominating broadcast in a graph $G$ is denoted $\gamma_b(G)$. The dual of this problem is called multipacking: a multipacking is a set $M$ of vertices such that for any vertex $v$ and any positive integer $r$, the ball of radius $r$ around $v$ contains at most $r$ vertices of $M$ . The maximum size of a multipacking in a graph $G$ is denoted mp(G). Naturally mp(G) $\leq \gamma_b(G)$. Earlier results by Farber and by Lubiw show that broadcast and multipacking numbers are equal for strongly chordal graphs. In this paper, we show that all large grids (height at least 4 and width at least 7), which are far from being chordal, have their broadcast and multipacking numbers equal.
Section: Graph Theory

23. Backbone colouring and algorithms for TDMA scheduling

Bensmail, Julien ; Blanc, Thibaut ; Cohen, Nathann ; Havet, Frédéric ; Rocha, Leonardo.
We investigate graph colouring models for the purpose of optimizing TDMA link scheduling in Wireless Networks. Inspired by the BPRN-colouring model recently introduced by Rocha and Sasaki, we introduce a new colouring model, namely the BMRN-colouring model, which can be used to model link scheduling problems where particular types of collisions must be avoided during the node transmissions. In this paper, we initiate the study of the BMRN-colouring model by providing several bounds on the minimum number of colours needed to BMRN-colour digraphs, as well as several complexity results establishing the hardness of finding optimal colourings. We also give a special focus on these considerations for planar digraph topologies, for which we provide refined results.
Section: Graph Theory